Enter a problem...
Basic Math Examples
3√k=m3√k=m
Step 1
Step 1.1
Divide each term in 3√k=m3√k=m by 33.
3√k3=m33√k3=m3
Step 1.2
Simplify the left side.
Step 1.2.1
Cancel the common factor of 33.
Step 1.2.1.1
Cancel the common factor.
3√k3=m3
Step 1.2.1.2
Divide √k by 1.
√k=m3
√k=m3
√k=m3
√k=m3
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
√k2=(m3)2
Step 3
Step 3.1
Use n√ax=axn to rewrite √k as k12.
(k12)2=(m3)2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify (k12)2.
Step 3.2.1.1
Multiply the exponents in (k12)2.
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
k12⋅2=(m3)2
Step 3.2.1.1.2
Cancel the common factor of 2.
Step 3.2.1.1.2.1
Cancel the common factor.
k12⋅2=(m3)2
Step 3.2.1.1.2.2
Rewrite the expression.
k1=(m3)2
k1=(m3)2
k1=(m3)2
Step 3.2.1.2
Simplify.
k=(m3)2
k=(m3)2
k=(m3)2
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify (m3)2.
Step 3.3.1.1
Apply the product rule to m3.
k=m232
Step 3.3.1.2
Raise 3 to the power of 2.
k=m29
k=m29
k=m29
k=m29