Basic Math Examples

Solve for k 3 square root of k=m
3k=m3k=m
Step 1
Divide each term in 3k=m3k=m by 33 and simplify.
Tap for more steps...
Step 1.1
Divide each term in 3k=m3k=m by 33.
3k3=m33k3=m3
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of 33.
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
3k3=m3
Step 1.2.1.2
Divide k by 1.
k=m3
k=m3
k=m3
k=m3
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
k2=(m3)2
Step 3
Simplify each side of the equation.
Tap for more steps...
Step 3.1
Use nax=axn to rewrite k as k12.
(k12)2=(m3)2
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify (k12)2.
Tap for more steps...
Step 3.2.1.1
Multiply the exponents in (k12)2.
Tap for more steps...
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
k122=(m3)2
Step 3.2.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
k122=(m3)2
Step 3.2.1.1.2.2
Rewrite the expression.
k1=(m3)2
k1=(m3)2
k1=(m3)2
Step 3.2.1.2
Simplify.
k=(m3)2
k=(m3)2
k=(m3)2
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Simplify (m3)2.
Tap for more steps...
Step 3.3.1.1
Apply the product rule to m3.
k=m232
Step 3.3.1.2
Raise 3 to the power of 2.
k=m29
k=m29
k=m29
k=m29
 [x2  12  π  xdx ]