Enter a problem...
Basic Math Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 1.3
Add to both sides of the equation.
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Apply the product rule to .
Step 3.2.1.2
Raise to the power of .
Step 3.2.1.3
Multiply the exponents in .
Step 3.2.1.3.1
Apply the power rule and multiply exponents, .
Step 3.2.1.3.2
Cancel the common factor of .
Step 3.2.1.3.2.1
Cancel the common factor.
Step 3.2.1.3.2.2
Rewrite the expression.
Step 3.2.1.4
Simplify.
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify .
Step 3.3.1.1
Rewrite as .
Step 3.3.1.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 3.3.1.3
Simplify terms.
Step 3.3.1.3.1
Simplify each term.
Step 3.3.1.3.1.1
Multiply by by adding the exponents.
Step 3.3.1.3.1.1.1
Move .
Step 3.3.1.3.1.1.2
Multiply by .
Step 3.3.1.3.1.2
Rewrite as .
Step 3.3.1.3.1.3
Multiply .
Step 3.3.1.3.1.3.1
Multiply by .
Step 3.3.1.3.1.3.2
Multiply by .
Step 3.3.1.3.1.3.3
Raise to the power of .
Step 3.3.1.3.1.3.4
Raise to the power of .
Step 3.3.1.3.1.3.5
Use the power rule to combine exponents.
Step 3.3.1.3.1.3.6
Add and .
Step 3.3.1.3.1.4
Rewrite as .
Step 3.3.1.3.1.4.1
Use to rewrite as .
Step 3.3.1.3.1.4.2
Apply the power rule and multiply exponents, .
Step 3.3.1.3.1.4.3
Combine and .
Step 3.3.1.3.1.4.4
Cancel the common factor of .
Step 3.3.1.3.1.4.4.1
Cancel the common factor.
Step 3.3.1.3.1.4.4.2
Rewrite the expression.
Step 3.3.1.3.1.4.5
Evaluate the exponent.
Step 3.3.1.3.1.5
Move to the left of .
Step 3.3.1.3.1.6
Multiply by by adding the exponents.
Step 3.3.1.3.1.6.1
Move .
Step 3.3.1.3.1.6.2
Multiply by .
Step 3.3.1.3.1.7
Multiply .
Step 3.3.1.3.1.7.1
Multiply by .
Step 3.3.1.3.1.7.2
Multiply by .
Step 3.3.1.3.1.8
Multiply by .
Step 3.3.1.3.1.9
Multiply by by adding the exponents.
Step 3.3.1.3.1.9.1
Move .
Step 3.3.1.3.1.9.2
Multiply by .
Step 3.3.1.3.1.10
Rewrite as .
Step 3.3.1.3.1.11
Multiply .
Step 3.3.1.3.1.11.1
Multiply by .
Step 3.3.1.3.1.11.2
Multiply by .
Step 3.3.1.3.1.12
Rewrite using the commutative property of multiplication.
Step 3.3.1.3.1.13
Multiply by by adding the exponents.
Step 3.3.1.3.1.13.1
Move .
Step 3.3.1.3.1.13.2
Multiply by .
Step 3.3.1.3.1.14
Multiply by .
Step 3.3.1.3.1.15
Multiply by .
Step 3.3.1.3.1.16
Multiply by .
Step 3.3.1.3.1.17
Multiply by .
Step 3.3.1.3.1.18
Multiply by .
Step 3.3.1.3.1.19
Multiply by .
Step 3.3.1.3.2
Simplify by adding terms.
Step 3.3.1.3.2.1
Add and .
Step 3.3.1.3.2.2
Add and .
Step 3.3.1.3.2.3
Subtract from .
Step 3.3.1.3.2.4
Subtract from .
Step 4
Step 4.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 4.2
Move all terms containing to the left side of the equation.
Step 4.2.1
Subtract from both sides of the equation.
Step 4.2.2
Subtract from .
Step 4.3
Factor the left side of the equation.
Step 4.3.1
Regroup terms.
Step 4.3.2
Factor out of .
Step 4.3.2.1
Factor out of .
Step 4.3.2.2
Factor out of .
Step 4.3.2.3
Factor out of .
Step 4.3.3
Factor by grouping.
Step 4.3.3.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.3.3.1.1
Factor out of .
Step 4.3.3.1.2
Rewrite as plus
Step 4.3.3.1.3
Apply the distributive property.
Step 4.3.3.2
Factor out the greatest common factor from each group.
Step 4.3.3.2.1
Group the first two terms and the last two terms.
Step 4.3.3.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3.3.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.3.4
Factor out of .
Step 4.3.4.1
Factor out of .
Step 4.3.4.2
Factor out of .
Step 4.3.4.3
Factor out of .
Step 4.3.5
Reorder terms.
Step 4.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.5
Set equal to and solve for .
Step 4.5.1
Set equal to .
Step 4.5.2
Add to both sides of the equation.
Step 4.6
Set equal to and solve for .
Step 4.6.1
Set equal to .
Step 4.6.2
Solve for .
Step 4.6.2.1
Add to both sides of the equation.
Step 4.6.2.2
Factor out of .
Step 4.6.2.2.1
Factor out of .
Step 4.6.2.2.2
Factor out of .
Step 4.6.2.2.3
Factor out of .
Step 4.6.2.3
Divide each term in by and simplify.
Step 4.6.2.3.1
Divide each term in by .
Step 4.6.2.3.2
Simplify the left side.
Step 4.6.2.3.2.1
Cancel the common factor of and .
Step 4.6.2.3.2.1.1
Factor out of .
Step 4.6.2.3.2.1.2
Cancel the common factors.
Step 4.6.2.3.2.1.2.1
Factor out of .
Step 4.6.2.3.2.1.2.2
Factor out of .
Step 4.6.2.3.2.1.2.3
Factor out of .
Step 4.6.2.3.2.1.2.4
Cancel the common factor.
Step 4.6.2.3.2.1.2.5
Rewrite the expression.
Step 4.6.2.3.2.2
Cancel the common factor of .
Step 4.6.2.3.2.2.1
Cancel the common factor.
Step 4.6.2.3.2.2.2
Divide by .
Step 4.6.2.3.3
Simplify the right side.
Step 4.6.2.3.3.1
Multiply by .
Step 4.6.2.3.3.2
Multiply by .
Step 4.6.2.3.3.3
Expand the denominator using the FOIL method.
Step 4.6.2.3.3.4
Simplify.
Step 4.6.2.3.3.5
Cancel the common factor of and .
Step 4.6.2.3.3.5.1
Factor out of .
Step 4.6.2.3.3.5.2
Cancel the common factors.
Step 4.6.2.3.3.5.2.1
Factor out of .
Step 4.6.2.3.3.5.2.2
Cancel the common factor.
Step 4.6.2.3.3.5.2.3
Rewrite the expression.
Step 4.7
The final solution is all the values that make true.
Step 5
Exclude the solutions that do not make true.
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: