Basic Math Examples

Solve for p 12p^2+bp+3=0
12p2+bp+3=012p2+bp+3=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=12a=12, b=bb=b, and c=3c=3 into the quadratic formula and solve for pp.
-b±b2-4(123)212b±b24(123)212
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Multiply -41234123.
Tap for more steps...
Step 3.1.1.1
Multiply -44 by 1212.
p=-b±b2-483212p=b±b2483212
Step 3.1.1.2
Multiply -4848 by 33.
p=-b±b2-144212p=b±b2144212
p=-b±b2-144212p=b±b2144212
Step 3.1.2
Rewrite b2-144b2144 in a factored form.
Tap for more steps...
Step 3.1.2.1
Rewrite 144144 as 122122.
p=-b±b2-122212p=b±b2122212
Step 3.1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=ba=b and b=12b=12.
p=-b±(b+12)(b-12)212p=b±(b+12)(b12)212
p=-b±(b+12)(b-12)212p=b±(b+12)(b12)212
p=-b±(b+12)(b-12)212p=b±(b+12)(b12)212
Step 3.2
Multiply 22 by 1212.
p=-b±(b+12)(b-12)24p=b±(b+12)(b12)24
p=-b±(b+12)(b-12)24p=b±(b+12)(b12)24
Step 4
The final answer is the combination of both solutions.
p=-b-(b+12)(b-12)24p=b(b+12)(b12)24
p=-b+(b+12)(b-12)24p=b+(b+12)(b12)24
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]  x2  12  π  xdx