Enter a problem...
Basic Math Examples
12p2+bp+3=012p2+bp+3=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=12a=12, b=bb=b, and c=3c=3 into the quadratic formula and solve for pp.
-b±√b2-4⋅(12⋅3)2⋅12−b±√b2−4⋅(12⋅3)2⋅12
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Multiply -4⋅12⋅3−4⋅12⋅3.
Step 3.1.1.1
Multiply -4−4 by 1212.
p=-b±√b2-48⋅32⋅12p=−b±√b2−48⋅32⋅12
Step 3.1.1.2
Multiply -48−48 by 33.
p=-b±√b2-1442⋅12p=−b±√b2−1442⋅12
p=-b±√b2-1442⋅12p=−b±√b2−1442⋅12
Step 3.1.2
Rewrite b2-144b2−144 in a factored form.
Step 3.1.2.1
Rewrite 144144 as 122122.
p=-b±√b2-1222⋅12p=−b±√b2−1222⋅12
Step 3.1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=ba=b and b=12b=12.
p=-b±√(b+12)(b-12)2⋅12p=−b±√(b+12)(b−12)2⋅12
p=-b±√(b+12)(b-12)2⋅12p=−b±√(b+12)(b−12)2⋅12
p=-b±√(b+12)(b-12)2⋅12p=−b±√(b+12)(b−12)2⋅12
Step 3.2
Multiply 22 by 1212.
p=-b±√(b+12)(b-12)24p=−b±√(b+12)(b−12)24
p=-b±√(b+12)(b-12)24p=−b±√(b+12)(b−12)24
Step 4
The final answer is the combination of both solutions.
p=-b-√(b+12)(b-12)24p=−b−√(b+12)(b−12)24
p=-b+√(b+12)(b-12)24p=−b+√(b+12)(b−12)24