Enter a problem...
Basic Math Examples
cos(B)=462+582-702÷2⋅46⋅58cos(B)=462+582−702÷2⋅46⋅58
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Raise 4646 to the power of 22.
cos(B)=2116+582-702÷2⋅46⋅58cos(B)=2116+582−702÷2⋅46⋅58
Step 1.1.2
Raise 5858 to the power of 22.
cos(B)=2116+3364-702÷2⋅46⋅58cos(B)=2116+3364−702÷2⋅46⋅58
Step 1.1.3
Raise 7070 to the power of 22.
cos(B)=2116+3364-4900÷2⋅46⋅58cos(B)=2116+3364−4900÷2⋅46⋅58
Step 1.1.4
Cancel the common factor of 22.
Step 1.1.4.1
Move the leading negative in -4900÷2−4900÷2 into the numerator.
cos(B)=2116+3364+-4900÷2⋅46⋅58cos(B)=2116+3364+−4900÷2⋅46⋅58
Step 1.1.4.2
Factor 22 out of 4646.
cos(B)=2116+3364+-4900÷2⋅(2(23))⋅58cos(B)=2116+3364+−4900÷2⋅(2(23))⋅58
Step 1.1.4.3
Cancel the common factor.
cos(B)=2116+3364+-4900÷2⋅(2⋅23)⋅58
Step 1.1.4.4
Rewrite the expression.
cos(B)=2116+3364-4900⋅23⋅58
cos(B)=2116+3364-4900⋅23⋅58
Step 1.1.5
Multiply -4900 by 23.
cos(B)=2116+3364-112700⋅58
Step 1.1.6
Multiply -112700 by 58.
cos(B)=2116+3364-6536600
cos(B)=2116+3364-6536600
Step 1.2
Simplify by adding and subtracting.
Step 1.2.1
Add 2116 and 3364.
cos(B)=5480-6536600
Step 1.2.2
Subtract 6536600 from 5480.
cos(B)=-6531120
cos(B)=-6531120
cos(B)=-6531120
Step 2
The range of cosine is -1≤y≤1. Since -6531120 does not fall in this range, there is no solution.
No solution