Enter a problem...
Basic Math Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Expand using the FOIL Method.
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Apply the distributive property.
Step 1.2.3
Apply the distributive property.
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Multiply by .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Multiply by .
Step 1.3.2
Add and .
Step 1.4
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.5
Simplify terms.
Step 1.5.1
Simplify each term.
Step 1.5.1.1
Multiply by by adding the exponents.
Step 1.5.1.1.1
Multiply by .
Step 1.5.1.1.1.1
Raise to the power of .
Step 1.5.1.1.1.2
Use the power rule to combine exponents.
Step 1.5.1.1.2
Add and .
Step 1.5.1.2
Move to the left of .
Step 1.5.1.3
Multiply by by adding the exponents.
Step 1.5.1.3.1
Move .
Step 1.5.1.3.2
Multiply by .
Step 1.5.1.4
Multiply by .
Step 1.5.1.5
Multiply by .
Step 1.5.2
Simplify by adding terms.
Step 1.5.2.1
Add and .
Step 1.5.2.2
Add and .
Step 1.6
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.7
Simplify terms.
Step 1.7.1
Simplify each term.
Step 1.7.1.1
Multiply by by adding the exponents.
Step 1.7.1.1.1
Multiply by .
Step 1.7.1.1.1.1
Raise to the power of .
Step 1.7.1.1.1.2
Use the power rule to combine exponents.
Step 1.7.1.1.2
Add and .
Step 1.7.1.2
Move to the left of .
Step 1.7.1.3
Rewrite as .
Step 1.7.1.4
Multiply by by adding the exponents.
Step 1.7.1.4.1
Move .
Step 1.7.1.4.2
Multiply by .
Step 1.7.1.4.2.1
Raise to the power of .
Step 1.7.1.4.2.2
Use the power rule to combine exponents.
Step 1.7.1.4.3
Add and .
Step 1.7.1.5
Multiply by .
Step 1.7.1.6
Multiply by by adding the exponents.
Step 1.7.1.6.1
Move .
Step 1.7.1.6.2
Multiply by .
Step 1.7.1.7
Multiply by .
Step 1.7.1.8
Multiply by .
Step 1.7.2
Simplify by adding terms.
Step 1.7.2.1
Subtract from .
Step 1.7.2.2
Subtract from .
Step 1.7.2.3
Subtract from .
Step 2
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 3