Enter a problem...
Basic Math Examples
ln(k)=-aR⋅1t+ln(A)ln(k)=−aR⋅1t+ln(A)
Step 1
Rewrite the equation as -aR⋅1t+ln(A)=ln(k)−aR⋅1t+ln(A)=ln(k).
-aR⋅1t+ln(A)=ln(k)−aR⋅1t+ln(A)=ln(k)
Step 2
Step 2.1
Multiply 1t1t by aRaR.
-atR+ln(A)=ln(k)−atR+ln(A)=ln(k)
-atR+ln(A)=ln(k)−atR+ln(A)=ln(k)
Step 3
Move all the terms containing a logarithm to the left side of the equation.
ln(A)-ln(k)=atRln(A)−ln(k)=atR
Step 4
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
ln(Ak)=atRln(Ak)=atR
Step 5
Step 5.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
1,tR1,tR
Step 5.2
The LCM of one and any expression is the expression.
tRtR
tRtR
Step 6
Step 6.1
Multiply each term in ln(Ak)=atRln(Ak)=atR by tRtR.
ln(Ak)(tR)=atR(tR)ln(Ak)(tR)=atR(tR)
Step 6.2
Simplify the left side.
Step 6.2.1
Reorder factors in ln(Ak)tRln(Ak)tR.
tRln(Ak)=atR(tR)tRln(Ak)=atR(tR)
tRln(Ak)=atR(tR)tRln(Ak)=atR(tR)
Step 6.3
Simplify the right side.
Step 6.3.1
Cancel the common factor of tRtR.
Step 6.3.1.1
Cancel the common factor.
tRln(Ak)=atR(tR)
Step 6.3.1.2
Rewrite the expression.
tRln(Ak)=a
tRln(Ak)=a
tRln(Ak)=a
tRln(Ak)=a
Step 7
Step 7.1
Divide each term in tRln(Ak)=a by Rln(Ak).
tRln(Ak)Rln(Ak)=aRln(Ak)
Step 7.2
Simplify the left side.
Step 7.2.1
Cancel the common factor of R.
Step 7.2.1.1
Cancel the common factor.
tRln(Ak)Rln(Ak)=aRln(Ak)
Step 7.2.1.2
Rewrite the expression.
tln(Ak)ln(Ak)=aRln(Ak)
tln(Ak)ln(Ak)=aRln(Ak)
Step 7.2.2
Cancel the common factor of ln(Ak).
Step 7.2.2.1
Cancel the common factor.
tln(Ak)ln(Ak)=aRln(Ak)
Step 7.2.2.2
Divide t by 1.
t=aRln(Ak)
t=aRln(Ak)
t=aRln(Ak)
t=aRln(Ak)