Basic Math Examples

Solve for t natural log of k=-a/R*1/t+ natural log of A
ln(k)=-aR1t+ln(A)ln(k)=aR1t+ln(A)
Step 1
Rewrite the equation as -aR1t+ln(A)=ln(k)aR1t+ln(A)=ln(k).
-aR1t+ln(A)=ln(k)aR1t+ln(A)=ln(k)
Step 2
Simplify the left side.
Tap for more steps...
Step 2.1
Multiply 1t1t by aRaR.
-atR+ln(A)=ln(k)atR+ln(A)=ln(k)
-atR+ln(A)=ln(k)atR+ln(A)=ln(k)
Step 3
Move all the terms containing a logarithm to the left side of the equation.
ln(A)-ln(k)=atRln(A)ln(k)=atR
Step 4
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)logb(y)=logb(xy).
ln(Ak)=atRln(Ak)=atR
Step 5
Find the LCD of the terms in the equation.
Tap for more steps...
Step 5.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
1,tR1,tR
Step 5.2
The LCM of one and any expression is the expression.
tRtR
tRtR
Step 6
Multiply each term in ln(Ak)=atRln(Ak)=atR by tRtR to eliminate the fractions.
Tap for more steps...
Step 6.1
Multiply each term in ln(Ak)=atRln(Ak)=atR by tRtR.
ln(Ak)(tR)=atR(tR)ln(Ak)(tR)=atR(tR)
Step 6.2
Simplify the left side.
Tap for more steps...
Step 6.2.1
Reorder factors in ln(Ak)tRln(Ak)tR.
tRln(Ak)=atR(tR)tRln(Ak)=atR(tR)
tRln(Ak)=atR(tR)tRln(Ak)=atR(tR)
Step 6.3
Simplify the right side.
Tap for more steps...
Step 6.3.1
Cancel the common factor of tRtR.
Tap for more steps...
Step 6.3.1.1
Cancel the common factor.
tRln(Ak)=atR(tR)
Step 6.3.1.2
Rewrite the expression.
tRln(Ak)=a
tRln(Ak)=a
tRln(Ak)=a
tRln(Ak)=a
Step 7
Divide each term in tRln(Ak)=a by Rln(Ak) and simplify.
Tap for more steps...
Step 7.1
Divide each term in tRln(Ak)=a by Rln(Ak).
tRln(Ak)Rln(Ak)=aRln(Ak)
Step 7.2
Simplify the left side.
Tap for more steps...
Step 7.2.1
Cancel the common factor of R.
Tap for more steps...
Step 7.2.1.1
Cancel the common factor.
tRln(Ak)Rln(Ak)=aRln(Ak)
Step 7.2.1.2
Rewrite the expression.
tln(Ak)ln(Ak)=aRln(Ak)
tln(Ak)ln(Ak)=aRln(Ak)
Step 7.2.2
Cancel the common factor of ln(Ak).
Tap for more steps...
Step 7.2.2.1
Cancel the common factor.
tln(Ak)ln(Ak)=aRln(Ak)
Step 7.2.2.2
Divide t by 1.
t=aRln(Ak)
t=aRln(Ak)
t=aRln(Ak)
t=aRln(Ak)
 [x2  12  π  xdx ]