Enter a problem...
Basic Math Examples
d=vt+12⋅(at2)
Step 1
Rewrite the equation as vt+12⋅(at2)=d.
vt+12⋅(at2)=d
Step 2
Step 2.1
Combine a and 12.
vt+a2t2=d
Step 2.2
Combine a2 and t2.
vt+at22=d
vt+at22=d
Step 3
Subtract d from both sides of the equation.
vt+at22-d=0
Step 4
Step 4.1
Apply the distributive property.
2(vt)+2(at22)+2(-d)=0
Step 4.2
Simplify.
Step 4.2.1
Cancel the common factor of 2.
Step 4.2.1.1
Cancel the common factor.
2vt+2(at22)+2(-d)=0
Step 4.2.1.2
Rewrite the expression.
2vt+at2+2(-d)=0
2vt+at2+2(-d)=0
Step 4.2.2
Multiply -1 by 2.
2vt+at2-2d=0
2vt+at2-2d=0
Step 4.3
Move v.
2tv+at2-2d=0
Step 4.4
Reorder 2tv and at2.
at2+2tv-2d=0
at2+2tv-2d=0
Step 5
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 6
Substitute the values a=a, b=2v, and c=-2d into the quadratic formula and solve for t.
-2v±√(2v)2-4⋅(a⋅(-2d))2a
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Add parentheses.
t=-2v±√(2v)2-4⋅(a⋅(-2d))2a
Step 7.1.2
Let u=a⋅(-2d). Substitute u for all occurrences of a⋅(-2d).
Step 7.1.2.1
Apply the product rule to 2v.
t=-2v±√22v2-4⋅u2a
Step 7.1.2.2
Raise 2 to the power of 2.
t=-2v±√4v2-4u2a
t=-2v±√4v2-4u2a
Step 7.1.3
Factor 4 out of 4v2-4u.
Step 7.1.3.1
Factor 4 out of 4v2.
t=-2v±√4(v2)-4u2a
Step 7.1.3.2
Factor 4 out of -4u.
t=-2v±√4(v2)+4(-u)2a
Step 7.1.3.3
Factor 4 out of 4(v2)+4(-u).
t=-2v±√4(v2-u)2a
t=-2v±√4(v2-u)2a
Step 7.1.4
Replace all occurrences of u with a⋅(-2d).
t=-2v±√4(v2-(a⋅(-2d)))2a
Step 7.1.5
Simplify each term.
Step 7.1.5.1
Rewrite using the commutative property of multiplication.
t=-2v±√4(v2-(-2ad))2a
Step 7.1.5.2
Multiply -2 by -1.
t=-2v±√4(v2+2ad)2a
t=-2v±√4(v2+2ad)2a
Step 7.1.6
Rewrite 4 as 22.
t=-2v±√22(v2+2ad)2a
Step 7.1.7
Pull terms out from under the radical.
t=-2v±2√v2+2ad2a
t=-2v±2√v2+2ad2a
Step 7.2
Simplify -2v±2√v2+2ad2a.
t=-v±√v2+2ada
t=-v±√v2+2ada
Step 8
The final answer is the combination of both solutions.
t=-v-√v2+2ada
t=-v+√v2+2ada