Basic Math Examples

Solve for t d=vt+1/2*(at^2)
d=vt+12(at2)
Step 1
Rewrite the equation as vt+12(at2)=d.
vt+12(at2)=d
Step 2
Multiply 12(at2).
Tap for more steps...
Step 2.1
Combine a and 12.
vt+a2t2=d
Step 2.2
Combine a2 and t2.
vt+at22=d
vt+at22=d
Step 3
Subtract d from both sides of the equation.
vt+at22-d=0
Step 4
Multiply through by the least common denominator 2, then simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
2(vt)+2(at22)+2(-d)=0
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
2vt+2(at22)+2(-d)=0
Step 4.2.1.2
Rewrite the expression.
2vt+at2+2(-d)=0
2vt+at2+2(-d)=0
Step 4.2.2
Multiply -1 by 2.
2vt+at2-2d=0
2vt+at2-2d=0
Step 4.3
Move v.
2tv+at2-2d=0
Step 4.4
Reorder 2tv and at2.
at2+2tv-2d=0
at2+2tv-2d=0
Step 5
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 6
Substitute the values a=a, b=2v, and c=-2d into the quadratic formula and solve for t.
-2v±(2v)2-4(a(-2d))2a
Step 7
Simplify.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Add parentheses.
t=-2v±(2v)2-4(a(-2d))2a
Step 7.1.2
Let u=a(-2d). Substitute u for all occurrences of a(-2d).
Tap for more steps...
Step 7.1.2.1
Apply the product rule to 2v.
t=-2v±22v2-4u2a
Step 7.1.2.2
Raise 2 to the power of 2.
t=-2v±4v2-4u2a
t=-2v±4v2-4u2a
Step 7.1.3
Factor 4 out of 4v2-4u.
Tap for more steps...
Step 7.1.3.1
Factor 4 out of 4v2.
t=-2v±4(v2)-4u2a
Step 7.1.3.2
Factor 4 out of -4u.
t=-2v±4(v2)+4(-u)2a
Step 7.1.3.3
Factor 4 out of 4(v2)+4(-u).
t=-2v±4(v2-u)2a
t=-2v±4(v2-u)2a
Step 7.1.4
Replace all occurrences of u with a(-2d).
t=-2v±4(v2-(a(-2d)))2a
Step 7.1.5
Simplify each term.
Tap for more steps...
Step 7.1.5.1
Rewrite using the commutative property of multiplication.
t=-2v±4(v2-(-2ad))2a
Step 7.1.5.2
Multiply -2 by -1.
t=-2v±4(v2+2ad)2a
t=-2v±4(v2+2ad)2a
Step 7.1.6
Rewrite 4 as 22.
t=-2v±22(v2+2ad)2a
Step 7.1.7
Pull terms out from under the radical.
t=-2v±2v2+2ad2a
t=-2v±2v2+2ad2a
Step 7.2
Simplify -2v±2v2+2ad2a.
t=-v±v2+2ada
t=-v±v2+2ada
Step 8
The final answer is the combination of both solutions.
t=-v-v2+2ada
t=-v+v2+2ada
 [x2  12  π  xdx ]