Enter a problem...
Basic Math Examples
(12169⋅(132)2÷35+1)2-114(12169⋅(132)2÷35+1)2−114
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
To divide by a fraction, multiply by its reciprocal.
(12169⋅(132)253+1)2-114(12169⋅(132)253+1)2−114
Step 1.1.2
Apply the product rule to 132132.
(12169⋅1322253+1)2-114(12169⋅1322253+1)2−114
Step 1.1.3
Combine.
(12⋅132169⋅22⋅53+1)2-114(12⋅132169⋅22⋅53+1)2−114
Step 1.1.4
Combine.
(12⋅132⋅5169⋅22⋅3+1)2-114(12⋅132⋅5169⋅22⋅3+1)2−114
Step 1.1.5
Cancel the common factor of 1212 and 33.
Step 1.1.5.1
Factor 33 out of 12⋅132⋅512⋅132⋅5.
(3(4⋅132⋅5)169⋅22⋅3+1)2-114(3(4⋅132⋅5)169⋅22⋅3+1)2−114
Step 1.1.5.2
Cancel the common factors.
Step 1.1.5.2.1
Factor 33 out of 169⋅22⋅3169⋅22⋅3.
(3(4⋅132⋅5)3⋅(169⋅22)+1)2-114(3(4⋅132⋅5)3⋅(169⋅22)+1)2−114
Step 1.1.5.2.2
Cancel the common factor.
(3(4⋅132⋅5)3⋅(169⋅22)+1)2-114
Step 1.1.5.2.3
Rewrite the expression.
(4⋅132⋅5169⋅22+1)2-114
(4⋅132⋅5169⋅22+1)2-114
(4⋅132⋅5169⋅22+1)2-114
Step 1.1.6
Multiply 5 by 4.
(20⋅132169⋅22+1)2-114
Step 1.1.7
Raise 2 to the power of 2.
(20⋅132169⋅4+1)2-114
Step 1.1.8
Raise 13 to the power of 2.
(20⋅169169⋅4+1)2-114
Step 1.1.9
Multiply 169 by 4.
(20⋅169676+1)2-114
Step 1.1.10
Multiply 20 by 169.
(3380676+1)2-114
Step 1.1.11
Divide 3380 by 676.
(5+1)2-114
(5+1)2-114
Step 1.2
Add 5 and 1.
62-114
Step 1.3
Raise 6 to the power of 2.
36-114
36-114
Step 2
To write 36 as a fraction with a common denominator, multiply by 44.
36⋅44-114
Step 3
Combine 36 and 44.
36⋅44-114
Step 4
Combine the numerators over the common denominator.
36⋅4-114
Step 5
Step 5.1
Multiply 36 by 4.
144-114
Step 5.2
Subtract 11 from 144.
1334
1334
Step 6
The result can be shown in multiple forms.
Exact Form:
1334
Decimal Form:
33.25
Mixed Number Form:
3314