Basic Math Examples

Evaluate ((-2^2)*(-5)+|-2|*(-3^2))/((-2)^3-(-3)^2+|-4^2|)
(-22)(-5)+|-2|(-32)(-2)3-(-3)2+|-42|(22)(5)+|2|(32)(2)3(3)2+42
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Raise 2 to the power of 2.
-14-5+|-2|-132(-2)3-(-3)2+|-42|
Step 1.2
Multiply -14-5.
Tap for more steps...
Step 1.2.1
Multiply -1 by 4.
-4-5+|-2|-132(-2)3-(-3)2+|-42|
Step 1.2.2
Multiply -4 by -5.
20+|-2|-132(-2)3-(-3)2+|-42|
20+|-2|-132(-2)3-(-3)2+|-42|
Step 1.3
The absolute value is the distance between a number and zero. The distance between -2 and 0 is 2.
20+2-132(-2)3-(-3)2+|-42|
Step 1.4
Multiply 2 by -1.
20-232(-2)3-(-3)2+|-42|
Step 1.5
Raise 3 to the power of 2.
20-29(-2)3-(-3)2+|-42|
Step 1.6
Multiply -2 by 9.
20-18(-2)3-(-3)2+|-42|
Step 1.7
Subtract 18 from 20.
2(-2)3-(-3)2+|-42|
2(-2)3-(-3)2+|-42|
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Raise -2 to the power of 3.
2-8-(-3)2+|-42|
Step 2.2
Raise -3 to the power of 2.
2-8-19+|-42|
Step 2.3
Multiply -1 by 9.
2-8-9+|-42|
Step 2.4
Raise 4 to the power of 2.
2-8-9+|-116|
Step 2.5
Multiply -1 by 16.
2-8-9+|-16|
Step 2.6
The absolute value is the distance between a number and zero. The distance between -16 and 0 is 16.
2-8-9+16
Step 2.7
Subtract 9 from -8.
2-17+16
Step 2.8
Add -17 and 16.
2-1
2-1
Step 3
Divide 2 by -1.
-2
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]