Basic Math Examples

Find the Variance 5 , 10 , 15 , 20
55 , 1010 , 1515 , 2020
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
x=5+10+15+204¯x=5+10+15+204
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Add 55 and 1010.
x=15+15+204¯x=15+15+204
Step 2.2
Add 1515 and 1515.
x=30+204¯x=30+204
Step 2.3
Add 3030 and 2020.
x=504¯x=504
x=504¯x=504
Step 3
Cancel the common factor of 5050 and 44.
Tap for more steps...
Step 3.1
Factor 22 out of 5050.
x=2(25)4¯x=2(25)4
Step 3.2
Cancel the common factors.
Tap for more steps...
Step 3.2.1
Factor 22 out of 44.
x=22522¯x=22522
Step 3.2.2
Cancel the common factor.
x=22522
Step 3.2.3
Rewrite the expression.
x=252
x=252
x=252
Step 4
Divide.
x=12.5
Step 5
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=ni=1(xi-xavg)2n-1
Step 6
Set up the formula for variance for this set of numbers.
s=(5-12.5)2+(10-12.5)2+(15-12.5)2+(20-12.5)24-1
Step 7
Simplify the result.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Subtract 12.5 from 5.
s=(-7.5)2+(10-12.5)2+(15-12.5)2+(20-12.5)24-1
Step 7.1.2
Raise -7.5 to the power of 2.
s=56.25+(10-12.5)2+(15-12.5)2+(20-12.5)24-1
Step 7.1.3
Subtract 12.5 from 10.
s=56.25+(-2.5)2+(15-12.5)2+(20-12.5)24-1
Step 7.1.4
Raise -2.5 to the power of 2.
s=56.25+6.25+(15-12.5)2+(20-12.5)24-1
Step 7.1.5
Subtract 12.5 from 15.
s=56.25+6.25+2.52+(20-12.5)24-1
Step 7.1.6
Raise 2.5 to the power of 2.
s=56.25+6.25+6.25+(20-12.5)24-1
Step 7.1.7
Subtract 12.5 from 20.
s=56.25+6.25+6.25+7.524-1
Step 7.1.8
Raise 7.5 to the power of 2.
s=56.25+6.25+6.25+56.254-1
Step 7.1.9
Add 56.25 and 6.25.
s=62.5+6.25+56.254-1
Step 7.1.10
Add 62.5 and 6.25.
s=68.75+56.254-1
Step 7.1.11
Add 68.75 and 56.25.
s=1254-1
s=1254-1
Step 7.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 7.2.1
Subtract 1 from 4.
s=1253
Step 7.2.2
Cancel the common factor of 125 and 3.
Tap for more steps...
Step 7.2.2.1
Rewrite 125 as 1(125).
s=1(125)3
Step 7.2.2.2
Cancel the common factors.
Tap for more steps...
Step 7.2.2.2.1
Rewrite 3 as 1(3).
s=112513
Step 7.2.2.2.2
Cancel the common factor.
s=112513
Step 7.2.2.2.3
Rewrite the expression.
s=1253
s=1253
s=1253
s=1253
s=1253
Step 8
Approximate the result.
s241.6667
 [x2  12  π  xdx ]