Enter a problem...
Basic Math Examples
3.95⋅10-33.95⋅10−3 , 1.47⋅10-61.47⋅10−6
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=3.95⋅10-3+1.47⋅10-62¯x=3.95⋅10−3+1.47⋅10−62
Step 2
Move the decimal point in 1.471.47 to the left by 33 places and increase the power of 10-610−6 by 33.
‾x=3.95⋅10-3+0.00147⋅10-32¯x=3.95⋅10−3+0.00147⋅10−32
Step 3
Factor 10-310−3 out of 3.95⋅10-3+0.00147⋅10-33.95⋅10−3+0.00147⋅10−3.
‾x=(3.95+0.00147)⋅10-32¯x=(3.95+0.00147)⋅10−32
Step 4
Add 3.953.95 and 0.001470.00147.
‾x=3.95147⋅10-32¯x=3.95147⋅10−32
Step 5
Step 5.1
Group coefficients together and exponents together to divide numbers in scientific notation.
‾x=(3.951472)(10-31)¯x=(3.951472)(10−31)
Step 5.2
Divide 3.951473.95147 by 22.
‾x=1.975735(10-31)¯x=1.975735(10−31)
Step 5.3
Divide 10-310−3 by 11.
‾x=1.975735⋅10-3¯x=1.975735⋅10−3
‾x=1.975735⋅10-3¯x=1.975735⋅10−3
Step 6
Divide.
‾x=0.00197573¯x=0.00197573
Step 7
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=n∑i=1(xi-xavg)2n-1s2=n∑i=1(xi−xavg)2n−1
Step 8
Set up the formula for variance for this set of numbers.
s=(3.95⋅10-3-0.00197573)2+(1.47⋅10-6-0.00197573)22-1s=(3.95⋅10−3−0.00197573)2+(1.47⋅10−6−0.00197573)22−1
Step 9
Step 9.1
Convert -0.00197573−0.00197573 to scientific notation.
s=(3.95⋅10-3-1.975735⋅10-3)2+(1.47⋅10-6-0.00197573)22-1s=(3.95⋅10−3−1.975735⋅10−3)2+(1.47⋅10−6−0.00197573)22−1
Step 9.2
Factor 10-310−3 out of 3.95⋅10-3-1.975735⋅10-33.95⋅10−3−1.975735⋅10−3.
s=((3.95-1.975735)⋅10-3)2+(1.47⋅10-6-0.00197573)22-1s=((3.95−1.975735)⋅10−3)2+(1.47⋅10−6−0.00197573)22−1
Step 9.3
Subtract 1.9757351.975735 from 3.953.95.
s=(1.974265⋅10-3)2+(1.47⋅10-6-0.00197573)22-1s=(1.974265⋅10−3)2+(1.47⋅10−6−0.00197573)22−1
Step 9.4
Convert -0.00197573−0.00197573 to scientific notation.
s=(1.974265⋅10-3)2+(1.47⋅10-6-1.975735⋅10-3)22-1s=(1.974265⋅10−3)2+(1.47⋅10−6−1.975735⋅10−3)22−1
Step 9.5
Move the decimal point in 1.471.47 to the left by 33 places and increase the power of 10-610−6 by 33.
s=(1.974265⋅10-3)2+(0.00147⋅10-3-1.975735⋅10-3)22-1s=(1.974265⋅10−3)2+(0.00147⋅10−3−1.975735⋅10−3)22−1
Step 9.6
Simplify with factoring out.
Step 9.6.1
Factor 10-310−3 out of 0.00147⋅10-3-1.975735⋅10-30.00147⋅10−3−1.975735⋅10−3.
s=(1.974265⋅10-3)2+((0.00147-1.975735)⋅10-3)22-1s=(1.974265⋅10−3)2+((0.00147−1.975735)⋅10−3)22−1
Step 9.6.2
Subtract 1.9757351.975735 from 0.001470.00147.
s=(1.974265⋅10-3)2+(-1.974265⋅10-3)22-1s=(1.974265⋅10−3)2+(−1.974265⋅10−3)22−1
s=(1.974265⋅10-3)2+(-1.974265⋅10-3)22-1s=(1.974265⋅10−3)2+(−1.974265⋅10−3)22−1
Step 9.7
Simplify the numerator.
Step 9.7.1
Apply the product rule to 1.974265⋅10-31.974265⋅10−3.
s=1.9742652⋅(10-3)2+(-1.974265⋅10-3)22-1s=1.9742652⋅(10−3)2+(−1.974265⋅10−3)22−1
Step 9.7.2
Raise 1.974265 to the power of 2.
s=3.89772229⋅(10-3)2+(-1.974265⋅10-3)22-1
Step 9.7.3
Multiply the exponents in (10-3)2.
Step 9.7.3.1
Apply the power rule and multiply exponents, (am)n=amn.
s=3.89772229⋅10-3⋅2+(-1.974265⋅10-3)22-1
Step 9.7.3.2
Multiply -3 by 2.
s=3.89772229⋅10-6+(-1.974265⋅10-3)22-1
s=3.89772229⋅10-6+(-1.974265⋅10-3)22-1
Step 9.7.4
Apply the product rule to -1.974265⋅10-3.
s=3.89772229⋅10-6+(-1.974265)2⋅(10-3)22-1
Step 9.7.5
Raise -1.974265 to the power of 2.
s=3.89772229⋅10-6+3.89772229⋅(10-3)22-1
Step 9.7.6
Multiply the exponents in (10-3)2.
Step 9.7.6.1
Apply the power rule and multiply exponents, (am)n=amn.
s=3.89772229⋅10-6+3.89772229⋅10-3⋅22-1
Step 9.7.6.2
Multiply -3 by 2.
s=3.89772229⋅10-6+3.89772229⋅10-62-1
s=3.89772229⋅10-6+3.89772229⋅10-62-1
Step 9.7.7
Add 3.89772229⋅10-6 and 3.89772229⋅10-6.
s=7.79544458⋅10-62-1
Step 9.7.8
Rewrite the expression using the negative exponent rule b-n=1bn.
s=7.79544458⋅11062-1
Step 9.7.9
Raise 10 to the power of 6.
s=7.79544458⋅110000002-1
s=7.79544458⋅110000002-1
Step 9.8
Subtract 1 from 2.
s=7.79544458⋅110000001
Step 9.9
Combine 7.79544458 and 11000000.
s=7.7954445810000001
Step 9.10
Simplify by dividing numbers.
Step 9.10.1
Divide 7.79544458 by 1000000.
s=0.000007791
Step 9.10.2
Divide 0.00000779 by 1.
s=0.00000779
s=0.00000779
s=0.00000779
Step 10
Approximate the result.
s2≈0