Basic Math Examples

Find the Variance 3.95*10^-3 , 1.47*10^-6
3.9510-33.95103 , 1.4710-61.47106
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
x=3.9510-3+1.4710-62¯x=3.95103+1.471062
Step 2
Move the decimal point in 1.471.47 to the left by 33 places and increase the power of 10-6106 by 33.
x=3.9510-3+0.0014710-32¯x=3.95103+0.001471032
Step 3
Factor 10-3103 out of 3.9510-3+0.0014710-33.95103+0.00147103.
x=(3.95+0.00147)10-32¯x=(3.95+0.00147)1032
Step 4
Add 3.953.95 and 0.001470.00147.
x=3.9514710-32¯x=3.951471032
Step 5
Divide using scientific notation.
Tap for more steps...
Step 5.1
Group coefficients together and exponents together to divide numbers in scientific notation.
x=(3.951472)(10-31)¯x=(3.951472)(1031)
Step 5.2
Divide 3.951473.95147 by 22.
x=1.975735(10-31)¯x=1.975735(1031)
Step 5.3
Divide 10-3103 by 11.
x=1.97573510-3¯x=1.975735103
x=1.97573510-3¯x=1.975735103
Step 6
Divide.
x=0.00197573¯x=0.00197573
Step 7
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=ni=1(xi-xavg)2n-1s2=ni=1(xixavg)2n1
Step 8
Set up the formula for variance for this set of numbers.
s=(3.9510-3-0.00197573)2+(1.4710-6-0.00197573)22-1s=(3.951030.00197573)2+(1.471060.00197573)221
Step 9
Simplify the result.
Tap for more steps...
Step 9.1
Convert -0.001975730.00197573 to scientific notation.
s=(3.9510-3-1.97573510-3)2+(1.4710-6-0.00197573)22-1s=(3.951031.975735103)2+(1.471060.00197573)221
Step 9.2
Factor 10-3103 out of 3.9510-3-1.97573510-33.951031.975735103.
s=((3.95-1.975735)10-3)2+(1.4710-6-0.00197573)22-1s=((3.951.975735)103)2+(1.471060.00197573)221
Step 9.3
Subtract 1.9757351.975735 from 3.953.95.
s=(1.97426510-3)2+(1.4710-6-0.00197573)22-1s=(1.974265103)2+(1.471060.00197573)221
Step 9.4
Convert -0.001975730.00197573 to scientific notation.
s=(1.97426510-3)2+(1.4710-6-1.97573510-3)22-1s=(1.974265103)2+(1.471061.975735103)221
Step 9.5
Move the decimal point in 1.471.47 to the left by 33 places and increase the power of 10-6106 by 33.
s=(1.97426510-3)2+(0.0014710-3-1.97573510-3)22-1s=(1.974265103)2+(0.001471031.975735103)221
Step 9.6
Simplify with factoring out.
Tap for more steps...
Step 9.6.1
Factor 10-3103 out of 0.0014710-3-1.97573510-30.001471031.975735103.
s=(1.97426510-3)2+((0.00147-1.975735)10-3)22-1s=(1.974265103)2+((0.001471.975735)103)221
Step 9.6.2
Subtract 1.9757351.975735 from 0.001470.00147.
s=(1.97426510-3)2+(-1.97426510-3)22-1s=(1.974265103)2+(1.974265103)221
s=(1.97426510-3)2+(-1.97426510-3)22-1s=(1.974265103)2+(1.974265103)221
Step 9.7
Simplify the numerator.
Tap for more steps...
Step 9.7.1
Apply the product rule to 1.97426510-31.974265103.
s=1.9742652(10-3)2+(-1.97426510-3)22-1s=1.9742652(103)2+(1.974265103)221
Step 9.7.2
Raise 1.974265 to the power of 2.
s=3.89772229(10-3)2+(-1.97426510-3)22-1
Step 9.7.3
Multiply the exponents in (10-3)2.
Tap for more steps...
Step 9.7.3.1
Apply the power rule and multiply exponents, (am)n=amn.
s=3.8977222910-32+(-1.97426510-3)22-1
Step 9.7.3.2
Multiply -3 by 2.
s=3.8977222910-6+(-1.97426510-3)22-1
s=3.8977222910-6+(-1.97426510-3)22-1
Step 9.7.4
Apply the product rule to -1.97426510-3.
s=3.8977222910-6+(-1.974265)2(10-3)22-1
Step 9.7.5
Raise -1.974265 to the power of 2.
s=3.8977222910-6+3.89772229(10-3)22-1
Step 9.7.6
Multiply the exponents in (10-3)2.
Tap for more steps...
Step 9.7.6.1
Apply the power rule and multiply exponents, (am)n=amn.
s=3.8977222910-6+3.8977222910-322-1
Step 9.7.6.2
Multiply -3 by 2.
s=3.8977222910-6+3.8977222910-62-1
s=3.8977222910-6+3.8977222910-62-1
Step 9.7.7
Add 3.8977222910-6 and 3.8977222910-6.
s=7.7954445810-62-1
Step 9.7.8
Rewrite the expression using the negative exponent rule b-n=1bn.
s=7.7954445811062-1
Step 9.7.9
Raise 10 to the power of 6.
s=7.79544458110000002-1
s=7.79544458110000002-1
Step 9.8
Subtract 1 from 2.
s=7.79544458110000001
Step 9.9
Combine 7.79544458 and 11000000.
s=7.7954445810000001
Step 9.10
Simplify by dividing numbers.
Tap for more steps...
Step 9.10.1
Divide 7.79544458 by 1000000.
s=0.000007791
Step 9.10.2
Divide 0.00000779 by 1.
s=0.00000779
s=0.00000779
s=0.00000779
Step 10
Approximate the result.
s20
 [x2  12  π  xdx ]