Enter a problem...
Basic Math Examples
-314−314 , -612
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
‾x=-(3+14),-612
Step 1.2
Add 3 and 14.
Step 1.2.1
To write 3 as a fraction with a common denominator, multiply by 44.
‾x=-(3⋅44+14),-612
Step 1.2.2
Combine 3 and 44.
‾x=-(3⋅44+14),-612
Step 1.2.3
Combine the numerators over the common denominator.
‾x=-3⋅4+14,-612
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 3 by 4.
‾x=-12+14,-612
Step 1.2.4.2
Add 12 and 1.
‾x=-134,-612
‾x=-134,-612
‾x=-134,-612
‾x=-134,-612
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
‾x=-134,-(6+12)
Step 2.2
Add 6 and 12.
Step 2.2.1
To write 6 as a fraction with a common denominator, multiply by 22.
‾x=-134,-(6⋅22+12)
Step 2.2.2
Combine 6 and 22.
‾x=-134,-(6⋅22+12)
Step 2.2.3
Combine the numerators over the common denominator.
‾x=-134,-6⋅2+12
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 6 by 2.
‾x=-134,-12+12
Step 2.2.4.2
Add 12 and 1.
‾x=-134,-132
‾x=-134,-132
‾x=-134,-132
‾x=-134,-132
Step 3
The mean of a set of numbers is the sum divided by the number of terms.
‾x=-134-1322
Step 4
Step 4.1
To write -132 as a fraction with a common denominator, multiply by 22.
‾x=-134-132⋅222
Step 4.2
Write each expression with a common denominator of 4, by multiplying each by an appropriate factor of 1.
Step 4.2.1
Multiply 132 by 22.
‾x=-134-13⋅22⋅22
Step 4.2.2
Multiply 2 by 2.
‾x=-134-13⋅242
‾x=-134-13⋅242
Step 4.3
Combine the numerators over the common denominator.
‾x=-13-13⋅242
Step 4.4
Simplify the numerator.
Step 4.4.1
Multiply -13 by 2.
‾x=-13-2642
Step 4.4.2
Subtract 26 from -13.
‾x=-3942
‾x=-3942
Step 4.5
Move the negative in front of the fraction.
‾x=-3942
‾x=-3942
Step 5
Multiply the numerator by the reciprocal of the denominator.
‾x=-394⋅12
Step 6
Step 6.1
Multiply 12 by 394.
‾x=-392⋅4
Step 6.2
Multiply 2 by 4.
‾x=-398
‾x=-398
Step 7
Divide.
‾x=-4.875
Step 8
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
‾x=-4.9
Step 9
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=n∑i=1(xi-xavg)2n-1
Step 10
Set up the formula for variance for this set of numbers.
s=(-134+4.9)2+(-132+4.9)22-1
Step 11
Step 11.1
Simplify the numerator.
Step 11.1.1
To write 4.9 as a fraction with a common denominator, multiply by 44.
s=(-134+4.9⋅44)2+(-132+4.9)22-1
Step 11.1.2
Combine 4.9 and 44.
s=(-134+4.9⋅44)2+(-132+4.9)22-1
Step 11.1.3
Combine the numerators over the common denominator.
s=(-13+4.9⋅44)2+(-132+4.9)22-1
Step 11.1.4
Simplify the numerator.
Step 11.1.4.1
Multiply 4.9 by 4.
s=(-13+19.64)2+(-132+4.9)22-1
Step 11.1.4.2
Add -13 and 19.6.
s=(6.64)2+(-132+4.9)22-1
s=(6.64)2+(-132+4.9)22-1
Step 11.1.5
Divide 6.6 by 4.
s=1.652+(-132+4.9)22-1
Step 11.1.6
Raise 1.65 to the power of 2.
s=2.7225+(-132+4.9)22-1
Step 11.1.7
To write 4.9 as a fraction with a common denominator, multiply by 22.
s=2.7225+(-132+4.9⋅22)22-1
Step 11.1.8
Combine 4.9 and 22.
s=2.7225+(-132+4.9⋅22)22-1
Step 11.1.9
Combine the numerators over the common denominator.
s=2.7225+(-13+4.9⋅22)22-1
Step 11.1.10
Simplify the numerator.
Step 11.1.10.1
Multiply 4.9 by 2.
s=2.7225+(-13+9.82)22-1
Step 11.1.10.2
Add -13 and 9.8.
s=2.7225+(-3.22)22-1
s=2.7225+(-3.22)22-1
Step 11.1.11
Divide -3.2 by 2.
s=2.7225+(-1.6)22-1
Step 11.1.12
Raise -1.6 to the power of 2.
s=2.7225+2.562-1
Step 11.1.13
Add 2.7225 and 2.56.
s=5.28252-1
s=5.28252-1
Step 11.2
Simplify the expression.
Step 11.2.1
Subtract 1 from 2.
s=5.28251
Step 11.2.2
Divide 5.2825 by 1.
s=5.2825
s=5.2825
s=5.2825
Step 12
Approximate the result.
s2≈5.2825