Basic Math Examples

Find the Variance 66 , 77 , 93 , 84 , 69 , 75 , 91 , 86 , 81 , 78
, , , , , , , , ,
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Add and .
Step 2.2
Add and .
Step 2.3
Add and .
Step 2.4
Add and .
Step 2.5
Add and .
Step 2.6
Add and .
Step 2.7
Add and .
Step 2.8
Add and .
Step 2.9
Add and .
Step 3
Divide by .
Step 4
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
Step 5
Set up the formula for variance for this set of numbers.
Step 6
Simplify the result.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Subtract from .
Step 6.1.2
Raise to the power of .
Step 6.1.3
Subtract from .
Step 6.1.4
Raise to the power of .
Step 6.1.5
Subtract from .
Step 6.1.6
Raise to the power of .
Step 6.1.7
Subtract from .
Step 6.1.8
Raise to the power of .
Step 6.1.9
Subtract from .
Step 6.1.10
Raise to the power of .
Step 6.1.11
Subtract from .
Step 6.1.12
Raise to the power of .
Step 6.1.13
Subtract from .
Step 6.1.14
Raise to the power of .
Step 6.1.15
Subtract from .
Step 6.1.16
Raise to the power of .
Step 6.1.17
Subtract from .
Step 6.1.18
One to any power is one.
Step 6.1.19
Subtract from .
Step 6.1.20
Raise to the power of .
Step 6.1.21
Add and .
Step 6.1.22
Add and .
Step 6.1.23
Add and .
Step 6.1.24
Add and .
Step 6.1.25
Add and .
Step 6.1.26
Add and .
Step 6.1.27
Add and .
Step 6.1.28
Add and .
Step 6.1.29
Add and .
Step 6.2
Subtract from .
Step 7
Approximate the result.