Enter a problem...
Basic Math Examples
16 , 17 , 18 , 19 , 20
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=16+17+18+19+205
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 16 and 17.
‾x=33+18+19+205
Step 1.2.2
Add 33 and 18.
‾x=51+19+205
Step 1.2.3
Add 51 and 19.
‾x=70+205
Step 1.2.4
Add 70 and 20.
‾x=905
‾x=905
Step 1.3
Divide 90 by 5.
‾x=18
‾x=18
Step 2
Step 2.1
Convert 16 to a decimal value.
16
Step 2.2
Convert 17 to a decimal value.
17
Step 2.3
Convert 18 to a decimal value.
18
Step 2.4
Convert 19 to a decimal value.
19
Step 2.5
Convert 20 to a decimal value.
20
Step 2.6
The simplified values are 16,17,18,19,20.
16,17,18,19,20
16,17,18,19,20
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(16-18)2+(17-18)2+(18-18)2+(19-18)2+(20-18)25-1
Step 5
Step 5.1
Simplify the expression.
Step 5.1.1
Subtract 18 from 16.
s=√(-2)2+(17-18)2+(18-18)2+(19-18)2+(20-18)25-1
Step 5.1.2
Raise -2 to the power of 2.
s=√4+(17-18)2+(18-18)2+(19-18)2+(20-18)25-1
Step 5.1.3
Subtract 18 from 17.
s=√4+(-1)2+(18-18)2+(19-18)2+(20-18)25-1
Step 5.1.4
Raise -1 to the power of 2.
s=√4+1+(18-18)2+(19-18)2+(20-18)25-1
Step 5.1.5
Subtract 18 from 18.
s=√4+1+02+(19-18)2+(20-18)25-1
Step 5.1.6
Raising 0 to any positive power yields 0.
s=√4+1+0+(19-18)2+(20-18)25-1
Step 5.1.7
Subtract 18 from 19.
s=√4+1+0+12+(20-18)25-1
Step 5.1.8
One to any power is one.
s=√4+1+0+1+(20-18)25-1
Step 5.1.9
Subtract 18 from 20.
s=√4+1+0+1+225-1
Step 5.1.10
Raise 2 to the power of 2.
s=√4+1+0+1+45-1
Step 5.1.11
Add 4 and 1.
s=√5+0+1+45-1
Step 5.1.12
Add 5 and 0.
s=√5+1+45-1
Step 5.1.13
Add 5 and 1.
s=√6+45-1
Step 5.1.14
Add 6 and 4.
s=√105-1
Step 5.1.15
Subtract 1 from 5.
s=√104
s=√104
Step 5.2
Cancel the common factor of 10 and 4.
Step 5.2.1
Factor 2 out of 10.
s=√2(5)4
Step 5.2.2
Cancel the common factors.
Step 5.2.2.1
Factor 2 out of 4.
s=√2⋅52⋅2
Step 5.2.2.2
Cancel the common factor.
s=√2⋅52⋅2
Step 5.2.2.3
Rewrite the expression.
s=√52
s=√52
s=√52
Step 5.3
Rewrite √52 as √5√2.
s=√5√2
Step 5.4
Multiply √5√2 by √2√2.
s=√5√2⋅√2√2
Step 5.5
Combine and simplify the denominator.
Step 5.5.1
Multiply √5√2 by √2√2.
s=√5√2√2√2
Step 5.5.2
Raise √2 to the power of 1.
s=√5√2√2√2
Step 5.5.3
Raise √2 to the power of 1.
s=√5√2√2√2
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=√5√2√21+1
Step 5.5.5
Add 1 and 1.
s=√5√2√22
Step 5.5.6
Rewrite √22 as 2.
Step 5.5.6.1
Use n√ax=axn to rewrite √2 as 212.
s=√5√2(212)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=√5√2212⋅2
Step 5.5.6.3
Combine 12 and 2.
s=√5√2222
Step 5.5.6.4
Cancel the common factor of 2.
Step 5.5.6.4.1
Cancel the common factor.
s=√5√2222
Step 5.5.6.4.2
Rewrite the expression.
s=√5√22
s=√5√22
Step 5.5.6.5
Evaluate the exponent.
s=√5√22
s=√5√22
s=√5√22
Step 5.6
Simplify the numerator.
Step 5.6.1
Combine using the product rule for radicals.
s=√5⋅22
Step 5.6.2
Multiply 5 by 2.
s=√102
s=√102
s=√102
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
1.6