Basic Math Examples

Find the Sample Standard Deviation 85 , 92 , 88 , 80 , 91 , 20
85 , 92 , 88 , 80 , 91 , 20
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=85+92+88+80+91+206
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 85 and 92.
x=177+88+80+91+206
Step 1.2.2
Add 177 and 88.
x=265+80+91+206
Step 1.2.3
Add 265 and 80.
x=345+91+206
Step 1.2.4
Add 345 and 91.
x=436+206
Step 1.2.5
Add 436 and 20.
x=4566
x=4566
Step 1.3
Divide 456 by 6.
x=76
x=76
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 85 to a decimal value.
85
Step 2.2
Convert 92 to a decimal value.
92
Step 2.3
Convert 88 to a decimal value.
88
Step 2.4
Convert 80 to a decimal value.
80
Step 2.5
Convert 91 to a decimal value.
91
Step 2.6
Convert 20 to a decimal value.
20
Step 2.7
The simplified values are 85,92,88,80,91,20.
85,92,88,80,91,20
85,92,88,80,91,20
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(85-76)2+(92-76)2+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Subtract 76 from 85.
s=92+(92-76)2+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5.2
Raise 9 to the power of 2.
s=81+(92-76)2+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5.3
Subtract 76 from 92.
s=81+162+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5.4
Raise 16 to the power of 2.
s=81+256+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5.5
Subtract 76 from 88.
s=81+256+122+(80-76)2+(91-76)2+(20-76)26-1
Step 5.6
Raise 12 to the power of 2.
s=81+256+144+(80-76)2+(91-76)2+(20-76)26-1
Step 5.7
Subtract 76 from 80.
s=81+256+144+42+(91-76)2+(20-76)26-1
Step 5.8
Raise 4 to the power of 2.
s=81+256+144+16+(91-76)2+(20-76)26-1
Step 5.9
Subtract 76 from 91.
s=81+256+144+16+152+(20-76)26-1
Step 5.10
Raise 15 to the power of 2.
s=81+256+144+16+225+(20-76)26-1
Step 5.11
Subtract 76 from 20.
s=81+256+144+16+225+(-56)26-1
Step 5.12
Raise -56 to the power of 2.
s=81+256+144+16+225+31366-1
Step 5.13
Add 81 and 256.
s=337+144+16+225+31366-1
Step 5.14
Add 337 and 144.
s=481+16+225+31366-1
Step 5.15
Add 481 and 16.
s=497+225+31366-1
Step 5.16
Add 497 and 225.
s=722+31366-1
Step 5.17
Add 722 and 3136.
s=38586-1
Step 5.18
Subtract 1 from 6.
s=38585
Step 5.19
Rewrite 38585 as 38585.
s=38585
Step 5.20
Multiply 38585 by 55.
s=3858555
Step 5.21
Combine and simplify the denominator.
Tap for more steps...
Step 5.21.1
Multiply 38585 by 55.
s=3858555
Step 5.21.2
Raise 5 to the power of 1.
s=3858555
Step 5.21.3
Raise 5 to the power of 1.
s=3858555
Step 5.21.4
Use the power rule aman=am+n to combine exponents.
s=3858551+1
Step 5.21.5
Add 1 and 1.
s=3858552
Step 5.21.6
Rewrite 52 as 5.
Tap for more steps...
Step 5.21.6.1
Use nax=axn to rewrite 5 as 512.
s=38585(512)2
Step 5.21.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=385855122
Step 5.21.6.3
Combine 12 and 2.
s=38585522
Step 5.21.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.21.6.4.1
Cancel the common factor.
s=38585522
Step 5.21.6.4.2
Rewrite the expression.
s=385855
s=385855
Step 5.21.6.5
Evaluate the exponent.
s=385855
s=385855
s=385855
Step 5.22
Simplify the numerator.
Tap for more steps...
Step 5.22.1
Combine using the product rule for radicals.
s=385855
Step 5.22.2
Multiply 3858 by 5.
s=192905
s=192905
s=192905
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
27.8
 [x2  12  π  xdx ]