Enter a problem...
Basic Math Examples
85 , 92 , 88 , 80 , 91 , 20
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=85+92+88+80+91+206
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 85 and 92.
‾x=177+88+80+91+206
Step 1.2.2
Add 177 and 88.
‾x=265+80+91+206
Step 1.2.3
Add 265 and 80.
‾x=345+91+206
Step 1.2.4
Add 345 and 91.
‾x=436+206
Step 1.2.5
Add 436 and 20.
‾x=4566
‾x=4566
Step 1.3
Divide 456 by 6.
‾x=76
‾x=76
Step 2
Step 2.1
Convert 85 to a decimal value.
85
Step 2.2
Convert 92 to a decimal value.
92
Step 2.3
Convert 88 to a decimal value.
88
Step 2.4
Convert 80 to a decimal value.
80
Step 2.5
Convert 91 to a decimal value.
91
Step 2.6
Convert 20 to a decimal value.
20
Step 2.7
The simplified values are 85,92,88,80,91,20.
85,92,88,80,91,20
85,92,88,80,91,20
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(85-76)2+(92-76)2+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5
Step 5.1
Subtract 76 from 85.
s=√92+(92-76)2+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5.2
Raise 9 to the power of 2.
s=√81+(92-76)2+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5.3
Subtract 76 from 92.
s=√81+162+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5.4
Raise 16 to the power of 2.
s=√81+256+(88-76)2+(80-76)2+(91-76)2+(20-76)26-1
Step 5.5
Subtract 76 from 88.
s=√81+256+122+(80-76)2+(91-76)2+(20-76)26-1
Step 5.6
Raise 12 to the power of 2.
s=√81+256+144+(80-76)2+(91-76)2+(20-76)26-1
Step 5.7
Subtract 76 from 80.
s=√81+256+144+42+(91-76)2+(20-76)26-1
Step 5.8
Raise 4 to the power of 2.
s=√81+256+144+16+(91-76)2+(20-76)26-1
Step 5.9
Subtract 76 from 91.
s=√81+256+144+16+152+(20-76)26-1
Step 5.10
Raise 15 to the power of 2.
s=√81+256+144+16+225+(20-76)26-1
Step 5.11
Subtract 76 from 20.
s=√81+256+144+16+225+(-56)26-1
Step 5.12
Raise -56 to the power of 2.
s=√81+256+144+16+225+31366-1
Step 5.13
Add 81 and 256.
s=√337+144+16+225+31366-1
Step 5.14
Add 337 and 144.
s=√481+16+225+31366-1
Step 5.15
Add 481 and 16.
s=√497+225+31366-1
Step 5.16
Add 497 and 225.
s=√722+31366-1
Step 5.17
Add 722 and 3136.
s=√38586-1
Step 5.18
Subtract 1 from 6.
s=√38585
Step 5.19
Rewrite √38585 as √3858√5.
s=√3858√5
Step 5.20
Multiply √3858√5 by √5√5.
s=√3858√5⋅√5√5
Step 5.21
Combine and simplify the denominator.
Step 5.21.1
Multiply √3858√5 by √5√5.
s=√3858√5√5√5
Step 5.21.2
Raise √5 to the power of 1.
s=√3858√5√5√5
Step 5.21.3
Raise √5 to the power of 1.
s=√3858√5√5√5
Step 5.21.4
Use the power rule aman=am+n to combine exponents.
s=√3858√5√51+1
Step 5.21.5
Add 1 and 1.
s=√3858√5√52
Step 5.21.6
Rewrite √52 as 5.
Step 5.21.6.1
Use n√ax=axn to rewrite √5 as 512.
s=√3858√5(512)2
Step 5.21.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=√3858√5512⋅2
Step 5.21.6.3
Combine 12 and 2.
s=√3858√5522
Step 5.21.6.4
Cancel the common factor of 2.
Step 5.21.6.4.1
Cancel the common factor.
s=√3858√5522
Step 5.21.6.4.2
Rewrite the expression.
s=√3858√55
s=√3858√55
Step 5.21.6.5
Evaluate the exponent.
s=√3858√55
s=√3858√55
s=√3858√55
Step 5.22
Simplify the numerator.
Step 5.22.1
Combine using the product rule for radicals.
s=√3858⋅55
Step 5.22.2
Multiply 3858 by 5.
s=√192905
s=√192905
s=√192905
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
27.8