Enter a problem...
Basic Math Examples
73 , 79 , 79 , 79 , 80 , 81 , 83 , 85 , 86 , 87 , 90
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=73+79+79+79+80+81+83+85+86+87+9011
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 73 and 79.
‾x=152+79+79+80+81+83+85+86+87+9011
Step 1.2.2
Add 152 and 79.
‾x=231+79+80+81+83+85+86+87+9011
Step 1.2.3
Add 231 and 79.
‾x=310+80+81+83+85+86+87+9011
Step 1.2.4
Add 310 and 80.
‾x=390+81+83+85+86+87+9011
Step 1.2.5
Add 390 and 81.
‾x=471+83+85+86+87+9011
Step 1.2.6
Add 471 and 83.
‾x=554+85+86+87+9011
Step 1.2.7
Add 554 and 85.
‾x=639+86+87+9011
Step 1.2.8
Add 639 and 86.
‾x=725+87+9011
Step 1.2.9
Add 725 and 87.
‾x=812+9011
Step 1.2.10
Add 812 and 90.
‾x=90211
‾x=90211
Step 1.3
Divide 902 by 11.
‾x=82
‾x=82
Step 2
Step 2.1
Convert 73 to a decimal value.
73
Step 2.2
Convert 79 to a decimal value.
79
Step 2.3
Convert 80 to a decimal value.
80
Step 2.4
Convert 81 to a decimal value.
81
Step 2.5
Convert 83 to a decimal value.
83
Step 2.6
Convert 85 to a decimal value.
85
Step 2.7
Convert 86 to a decimal value.
86
Step 2.8
Convert 87 to a decimal value.
87
Step 2.9
Convert 90 to a decimal value.
90
Step 2.10
The simplified values are 73,79,79,79,80,81,83,85,86,87,90.
73,79,79,79,80,81,83,85,86,87,90
73,79,79,79,80,81,83,85,86,87,90
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(73-82)2+(79-82)2+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5
Step 5.1
Simplify the expression.
Step 5.1.1
Subtract 82 from 73.
s=√(-9)2+(79-82)2+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.2
Raise -9 to the power of 2.
s=√81+(79-82)2+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.3
Subtract 82 from 79.
s=√81+(-3)2+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.4
Raise -3 to the power of 2.
s=√81+9+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.5
Subtract 82 from 79.
s=√81+9+(-3)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.6
Raise -3 to the power of 2.
s=√81+9+9+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.7
Subtract 82 from 79.
s=√81+9+9+(-3)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.8
Raise -3 to the power of 2.
s=√81+9+9+9+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.9
Subtract 82 from 80.
s=√81+9+9+9+(-2)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.10
Raise -2 to the power of 2.
s=√81+9+9+9+4+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.11
Subtract 82 from 81.
s=√81+9+9+9+4+(-1)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.12
Raise -1 to the power of 2.
s=√81+9+9+9+4+1+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.13
Subtract 82 from 83.
s=√81+9+9+9+4+1+12+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.14
One to any power is one.
s=√81+9+9+9+4+1+1+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.15
Subtract 82 from 85.
s=√81+9+9+9+4+1+1+32+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.16
Raise 3 to the power of 2.
s=√81+9+9+9+4+1+1+9+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.17
Subtract 82 from 86.
s=√81+9+9+9+4+1+1+9+42+(87-82)2+(90-82)211-1
Step 5.1.18
Raise 4 to the power of 2.
s=√81+9+9+9+4+1+1+9+16+(87-82)2+(90-82)211-1
Step 5.1.19
Subtract 82 from 87.
s=√81+9+9+9+4+1+1+9+16+52+(90-82)211-1
Step 5.1.20
Raise 5 to the power of 2.
s=√81+9+9+9+4+1+1+9+16+25+(90-82)211-1
Step 5.1.21
Subtract 82 from 90.
s=√81+9+9+9+4+1+1+9+16+25+8211-1
Step 5.1.22
Raise 8 to the power of 2.
s=√81+9+9+9+4+1+1+9+16+25+6411-1
Step 5.1.23
Add 81 and 9.
s=√90+9+9+4+1+1+9+16+25+6411-1
Step 5.1.24
Add 90 and 9.
s=√99+9+4+1+1+9+16+25+6411-1
Step 5.1.25
Add 99 and 9.
s=√108+4+1+1+9+16+25+6411-1
Step 5.1.26
Add 108 and 4.
s=√112+1+1+9+16+25+6411-1
Step 5.1.27
Add 112 and 1.
s=√113+1+9+16+25+6411-1
Step 5.1.28
Add 113 and 1.
s=√114+9+16+25+6411-1
Step 5.1.29
Add 114 and 9.
s=√123+16+25+6411-1
Step 5.1.30
Add 123 and 16.
s=√139+25+6411-1
Step 5.1.31
Add 139 and 25.
s=√164+6411-1
Step 5.1.32
Add 164 and 64.
s=√22811-1
Step 5.1.33
Subtract 1 from 11.
s=√22810
s=√22810
Step 5.2
Cancel the common factor of 228 and 10.
Step 5.2.1
Factor 2 out of 228.
s=√2(114)10
Step 5.2.2
Cancel the common factors.
Step 5.2.2.1
Factor 2 out of 10.
s=√2⋅1142⋅5
Step 5.2.2.2
Cancel the common factor.
s=√2⋅1142⋅5
Step 5.2.2.3
Rewrite the expression.
s=√1145
s=√1145
s=√1145
Step 5.3
Rewrite √1145 as √114√5.
s=√114√5
Step 5.4
Multiply √114√5 by √5√5.
s=√114√5⋅√5√5
Step 5.5
Combine and simplify the denominator.
Step 5.5.1
Multiply √114√5 by √5√5.
s=√114√5√5√5
Step 5.5.2
Raise √5 to the power of 1.
s=√114√5√5√5
Step 5.5.3
Raise √5 to the power of 1.
s=√114√5√5√5
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=√114√5√51+1
Step 5.5.5
Add 1 and 1.
s=√114√5√52
Step 5.5.6
Rewrite √52 as 5.
Step 5.5.6.1
Use n√ax=axn to rewrite √5 as 512.
s=√114√5(512)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=√114√5512⋅2
Step 5.5.6.3
Combine 12 and 2.
s=√114√5522
Step 5.5.6.4
Cancel the common factor of 2.
Step 5.5.6.4.1
Cancel the common factor.
s=√114√5522
Step 5.5.6.4.2
Rewrite the expression.
s=√114√55
s=√114√55
Step 5.5.6.5
Evaluate the exponent.
s=√114√55
s=√114√55
s=√114√55
Step 5.6
Simplify the numerator.
Step 5.6.1
Combine using the product rule for radicals.
s=√114⋅55
Step 5.6.2
Multiply 114 by 5.
s=√5705
s=√5705
s=√5705
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
4.8