Basic Math Examples

Find the Sample Standard Deviation 73 , 79 , 79 , 79 , 80 , 81 , 83 , 85 , 86 , 87 , 90
73 , 79 , 79 , 79 , 80 , 81 , 83 , 85 , 86 , 87 , 90
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=73+79+79+79+80+81+83+85+86+87+9011
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 73 and 79.
x=152+79+79+80+81+83+85+86+87+9011
Step 1.2.2
Add 152 and 79.
x=231+79+80+81+83+85+86+87+9011
Step 1.2.3
Add 231 and 79.
x=310+80+81+83+85+86+87+9011
Step 1.2.4
Add 310 and 80.
x=390+81+83+85+86+87+9011
Step 1.2.5
Add 390 and 81.
x=471+83+85+86+87+9011
Step 1.2.6
Add 471 and 83.
x=554+85+86+87+9011
Step 1.2.7
Add 554 and 85.
x=639+86+87+9011
Step 1.2.8
Add 639 and 86.
x=725+87+9011
Step 1.2.9
Add 725 and 87.
x=812+9011
Step 1.2.10
Add 812 and 90.
x=90211
x=90211
Step 1.3
Divide 902 by 11.
x=82
x=82
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 73 to a decimal value.
73
Step 2.2
Convert 79 to a decimal value.
79
Step 2.3
Convert 80 to a decimal value.
80
Step 2.4
Convert 81 to a decimal value.
81
Step 2.5
Convert 83 to a decimal value.
83
Step 2.6
Convert 85 to a decimal value.
85
Step 2.7
Convert 86 to a decimal value.
86
Step 2.8
Convert 87 to a decimal value.
87
Step 2.9
Convert 90 to a decimal value.
90
Step 2.10
The simplified values are 73,79,79,79,80,81,83,85,86,87,90.
73,79,79,79,80,81,83,85,86,87,90
73,79,79,79,80,81,83,85,86,87,90
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(73-82)2+(79-82)2+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Simplify the expression.
Tap for more steps...
Step 5.1.1
Subtract 82 from 73.
s=(-9)2+(79-82)2+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.2
Raise -9 to the power of 2.
s=81+(79-82)2+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.3
Subtract 82 from 79.
s=81+(-3)2+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.4
Raise -3 to the power of 2.
s=81+9+(79-82)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.5
Subtract 82 from 79.
s=81+9+(-3)2+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.6
Raise -3 to the power of 2.
s=81+9+9+(79-82)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.7
Subtract 82 from 79.
s=81+9+9+(-3)2+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.8
Raise -3 to the power of 2.
s=81+9+9+9+(80-82)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.9
Subtract 82 from 80.
s=81+9+9+9+(-2)2+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.10
Raise -2 to the power of 2.
s=81+9+9+9+4+(81-82)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.11
Subtract 82 from 81.
s=81+9+9+9+4+(-1)2+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.12
Raise -1 to the power of 2.
s=81+9+9+9+4+1+(83-82)2+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.13
Subtract 82 from 83.
s=81+9+9+9+4+1+12+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.14
One to any power is one.
s=81+9+9+9+4+1+1+(85-82)2+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.15
Subtract 82 from 85.
s=81+9+9+9+4+1+1+32+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.16
Raise 3 to the power of 2.
s=81+9+9+9+4+1+1+9+(86-82)2+(87-82)2+(90-82)211-1
Step 5.1.17
Subtract 82 from 86.
s=81+9+9+9+4+1+1+9+42+(87-82)2+(90-82)211-1
Step 5.1.18
Raise 4 to the power of 2.
s=81+9+9+9+4+1+1+9+16+(87-82)2+(90-82)211-1
Step 5.1.19
Subtract 82 from 87.
s=81+9+9+9+4+1+1+9+16+52+(90-82)211-1
Step 5.1.20
Raise 5 to the power of 2.
s=81+9+9+9+4+1+1+9+16+25+(90-82)211-1
Step 5.1.21
Subtract 82 from 90.
s=81+9+9+9+4+1+1+9+16+25+8211-1
Step 5.1.22
Raise 8 to the power of 2.
s=81+9+9+9+4+1+1+9+16+25+6411-1
Step 5.1.23
Add 81 and 9.
s=90+9+9+4+1+1+9+16+25+6411-1
Step 5.1.24
Add 90 and 9.
s=99+9+4+1+1+9+16+25+6411-1
Step 5.1.25
Add 99 and 9.
s=108+4+1+1+9+16+25+6411-1
Step 5.1.26
Add 108 and 4.
s=112+1+1+9+16+25+6411-1
Step 5.1.27
Add 112 and 1.
s=113+1+9+16+25+6411-1
Step 5.1.28
Add 113 and 1.
s=114+9+16+25+6411-1
Step 5.1.29
Add 114 and 9.
s=123+16+25+6411-1
Step 5.1.30
Add 123 and 16.
s=139+25+6411-1
Step 5.1.31
Add 139 and 25.
s=164+6411-1
Step 5.1.32
Add 164 and 64.
s=22811-1
Step 5.1.33
Subtract 1 from 11.
s=22810
s=22810
Step 5.2
Cancel the common factor of 228 and 10.
Tap for more steps...
Step 5.2.1
Factor 2 out of 228.
s=2(114)10
Step 5.2.2
Cancel the common factors.
Tap for more steps...
Step 5.2.2.1
Factor 2 out of 10.
s=211425
Step 5.2.2.2
Cancel the common factor.
s=211425
Step 5.2.2.3
Rewrite the expression.
s=1145
s=1145
s=1145
Step 5.3
Rewrite 1145 as 1145.
s=1145
Step 5.4
Multiply 1145 by 55.
s=114555
Step 5.5
Combine and simplify the denominator.
Tap for more steps...
Step 5.5.1
Multiply 1145 by 55.
s=114555
Step 5.5.2
Raise 5 to the power of 1.
s=114555
Step 5.5.3
Raise 5 to the power of 1.
s=114555
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=114551+1
Step 5.5.5
Add 1 and 1.
s=114552
Step 5.5.6
Rewrite 52 as 5.
Tap for more steps...
Step 5.5.6.1
Use nax=axn to rewrite 5 as 512.
s=1145(512)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=11455122
Step 5.5.6.3
Combine 12 and 2.
s=1145522
Step 5.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.5.6.4.1
Cancel the common factor.
s=1145522
Step 5.5.6.4.2
Rewrite the expression.
s=11455
s=11455
Step 5.5.6.5
Evaluate the exponent.
s=11455
s=11455
s=11455
Step 5.6
Simplify the numerator.
Tap for more steps...
Step 5.6.1
Combine using the product rule for radicals.
s=11455
Step 5.6.2
Multiply 114 by 5.
s=5705
s=5705
s=5705
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
4.8
 [x2  12  π  xdx ]