Basic Math Examples

Find the Sample Standard Deviation 5.6 , 5.2 , 4.6 , 4.9 , 5.7 , 6.4
5.65.6 , 5.2 , 4.6 , 4.9 , 5.7 , 6.4
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=5.6+5.2+4.6+4.9+5.7+6.46
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 5.6 and 5.2.
x=10.8+4.6+4.9+5.7+6.46
Step 1.2.2
Add 10.8 and 4.6.
x=15.4+4.9+5.7+6.46
Step 1.2.3
Add 15.4 and 4.9.
x=20.3+5.7+6.46
Step 1.2.4
Add 20.3 and 5.7.
x=26+6.46
Step 1.2.5
Add 26 and 6.4.
x=32.46
x=32.46
Step 1.3
Divide 32.4 by 6.
x=5.4
Step 1.4
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
x=5.4
x=5.4
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 5.6 to a decimal value.
5.6
Step 2.2
Convert 5.2 to a decimal value.
5.2
Step 2.3
Convert 4.6 to a decimal value.
4.6
Step 2.4
Convert 4.9 to a decimal value.
4.9
Step 2.5
Convert 5.7 to a decimal value.
5.7
Step 2.6
Convert 6.4 to a decimal value.
6.4
Step 2.7
The simplified values are 5.6,5.2,4.6,4.9,5.7,6.4.
5.6,5.2,4.6,4.9,5.7,6.4
5.6,5.2,4.6,4.9,5.7,6.4
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(5.6-5.4)2+(5.2-5.4)2+(4.6-5.4)2+(4.9-5.4)2+(5.7-5.4)2+(6.4-5.4)26-1
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Subtract 5.4 from 5.6.
s=0.22+(5.2-5.4)2+(4.6-5.4)2+(4.9-5.4)2+(5.7-5.4)2+(6.4-5.4)26-1
Step 5.2
Raise 0.2 to the power of 2.
s=0.04+(5.2-5.4)2+(4.6-5.4)2+(4.9-5.4)2+(5.7-5.4)2+(6.4-5.4)26-1
Step 5.3
Subtract 5.4 from 5.2.
s=0.04+(-0.2)2+(4.6-5.4)2+(4.9-5.4)2+(5.7-5.4)2+(6.4-5.4)26-1
Step 5.4
Raise -0.2 to the power of 2.
s=0.04+0.04+(4.6-5.4)2+(4.9-5.4)2+(5.7-5.4)2+(6.4-5.4)26-1
Step 5.5
Subtract 5.4 from 4.6.
s=0.04+0.04+(-0.8)2+(4.9-5.4)2+(5.7-5.4)2+(6.4-5.4)26-1
Step 5.6
Raise -0.8 to the power of 2.
s=0.04+0.04+0.64+(4.9-5.4)2+(5.7-5.4)2+(6.4-5.4)26-1
Step 5.7
Subtract 5.4 from 4.9.
s=0.04+0.04+0.64+(-0.5)2+(5.7-5.4)2+(6.4-5.4)26-1
Step 5.8
Raise -0.5 to the power of 2.
s=0.04+0.04+0.64+0.25+(5.7-5.4)2+(6.4-5.4)26-1
Step 5.9
Subtract 5.4 from 5.7.
s=0.04+0.04+0.64+0.25+0.32+(6.4-5.4)26-1
Step 5.10
Raise 0.3 to the power of 2.
s=0.04+0.04+0.64+0.25+0.09+(6.4-5.4)26-1
Step 5.11
Subtract 5.4 from 6.4.
s=0.04+0.04+0.64+0.25+0.09+126-1
Step 5.12
One to any power is one.
s=0.04+0.04+0.64+0.25+0.09+16-1
Step 5.13
Add 0.04 and 0.04.
s=0.08+0.64+0.25+0.09+16-1
Step 5.14
Add 0.08 and 0.64.
s=0.72+0.25+0.09+16-1
Step 5.15
Add 0.72 and 0.25.
s=0.97+0.09+16-1
Step 5.16
Add 0.97 and 0.09.
s=1.06+16-1
Step 5.17
Add 1.06 and 1.
s=2.066-1
Step 5.18
Subtract 1 from 6.
s=2.065
Step 5.19
Divide 2.06 by 5.
s=0.412
s=0.412
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
0.64
 [x2  12  π  xdx ]