Basic Math Examples

Find the Sample Standard Deviation 400 , 0 , 0÷490 , 0 , 0
400 , 0 , 0÷490 , 0 , 0
Step 1
Find the mean.
Tap for more steps...
Step 1.1
Divide 0 by 490.
x=400,0,0,0,0
Step 1.2
The mean of a set of numbers is the sum divided by the number of terms.
x=400+0+0+0+05
Step 1.3
Cancel the common factor of 400+0+0+0+0 and 5.
Tap for more steps...
Step 1.3.1
Factor 5 out of 400.
x=580+0+0+0+05
Step 1.3.2
Factor 5 out of 0.
x=580+50+0+0+05
Step 1.3.3
Factor 5 out of 580+50.
x=5(80+0)+0+0+05
Step 1.3.4
Factor 5 out of 0.
x=5(80+0)+50+0+05
Step 1.3.5
Factor 5 out of 5(80+0)+5(0).
x=5(80+0+0)+0+05
Step 1.3.6
Factor 5 out of 0.
x=5(80+0+0)+50+05
Step 1.3.7
Factor 5 out of 5(80+0+0)+5(0).
x=5(80+0+0+0)+05
Step 1.3.8
Factor 5 out of 0.
x=5(80+0+0+0)+505
Step 1.3.9
Factor 5 out of 5(80+0+0+0)+5(0).
x=5(80+0+0+0+0)5
Step 1.3.10
Cancel the common factors.
Tap for more steps...
Step 1.3.10.1
Factor 5 out of 5.
x=5(80+0+0+0+0)5(1)
Step 1.3.10.2
Cancel the common factor.
x=5(80+0+0+0+0)51
Step 1.3.10.3
Rewrite the expression.
x=80+0+0+0+01
Step 1.3.10.4
Divide 80+0+0+0+0 by 1.
x=80+0+0+0+0
x=80+0+0+0+0
x=80+0+0+0+0
Step 1.4
Simplify by adding numbers.
Tap for more steps...
Step 1.4.1
Add 80 and 0.
x=80+0+0+0
Step 1.4.2
Add 80 and 0.
x=80+0+0
Step 1.4.3
Add 80 and 0.
x=80+0
Step 1.4.4
Add 80 and 0.
x=80
x=80
x=80
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 400 to a decimal value.
400
Step 2.2
Convert 0 to a decimal value.
0
Step 2.3
The simplified values are 400,0,0,0,0.
400,0,0,0,0
400,0,0,0,0
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(400-80)2+(0-80)2+(0-80)2+(0-80)2+(0-80)25-1
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Subtract 80 from 400.
s=3202+(0-80)2+(0-80)2+(0-80)2+(0-80)25-1
Step 5.2
Raise 320 to the power of 2.
s=102400+(0-80)2+(0-80)2+(0-80)2+(0-80)25-1
Step 5.3
Subtract 80 from 0.
s=102400+(-80)2+(0-80)2+(0-80)2+(0-80)25-1
Step 5.4
Raise -80 to the power of 2.
s=102400+6400+(0-80)2+(0-80)2+(0-80)25-1
Step 5.5
Subtract 80 from 0.
s=102400+6400+(-80)2+(0-80)2+(0-80)25-1
Step 5.6
Raise -80 to the power of 2.
s=102400+6400+6400+(0-80)2+(0-80)25-1
Step 5.7
Subtract 80 from 0.
s=102400+6400+6400+(-80)2+(0-80)25-1
Step 5.8
Raise -80 to the power of 2.
s=102400+6400+6400+6400+(0-80)25-1
Step 5.9
Subtract 80 from 0.
s=102400+6400+6400+6400+(-80)25-1
Step 5.10
Raise -80 to the power of 2.
s=102400+6400+6400+6400+64005-1
Step 5.11
Add 102400 and 6400.
s=108800+6400+6400+64005-1
Step 5.12
Add 108800 and 6400.
s=115200+6400+64005-1
Step 5.13
Add 115200 and 6400.
s=121600+64005-1
Step 5.14
Add 121600 and 6400.
s=1280005-1
Step 5.15
Subtract 1 from 5.
s=1280004
Step 5.16
Divide 128000 by 4.
s=32000
Step 5.17
Rewrite 32000 as 8025.
Tap for more steps...
Step 5.17.1
Factor 6400 out of 32000.
s=6400(5)
Step 5.17.2
Rewrite 6400 as 802.
s=8025
s=8025
Step 5.18
Pull terms out from under the radical.
s=805
s=805
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
178.9
 [x2  12  π  xdx ]