Enter a problem...
Basic Math Examples
400 , 0 , 0÷490 , 0 , 0
Step 1
Step 1.1
Divide 0 by 490.
‾x=400,0,0,0,0
Step 1.2
The mean of a set of numbers is the sum divided by the number of terms.
‾x=400+0+0+0+05
Step 1.3
Cancel the common factor of 400+0+0+0+0 and 5.
Step 1.3.1
Factor 5 out of 400.
‾x=5⋅80+0+0+0+05
Step 1.3.2
Factor 5 out of 0.
‾x=5⋅80+5⋅0+0+0+05
Step 1.3.3
Factor 5 out of 5⋅80+5⋅0.
‾x=5⋅(80+0)+0+0+05
Step 1.3.4
Factor 5 out of 0.
‾x=5⋅(80+0)+5⋅0+0+05
Step 1.3.5
Factor 5 out of 5⋅(80+0)+5(0).
‾x=5⋅(80+0+0)+0+05
Step 1.3.6
Factor 5 out of 0.
‾x=5⋅(80+0+0)+5⋅0+05
Step 1.3.7
Factor 5 out of 5⋅(80+0+0)+5(0).
‾x=5⋅(80+0+0+0)+05
Step 1.3.8
Factor 5 out of 0.
‾x=5⋅(80+0+0+0)+5⋅05
Step 1.3.9
Factor 5 out of 5⋅(80+0+0+0)+5(0).
‾x=5⋅(80+0+0+0+0)5
Step 1.3.10
Cancel the common factors.
Step 1.3.10.1
Factor 5 out of 5.
‾x=5⋅(80+0+0+0+0)5(1)
Step 1.3.10.2
Cancel the common factor.
‾x=5⋅(80+0+0+0+0)5⋅1
Step 1.3.10.3
Rewrite the expression.
‾x=80+0+0+0+01
Step 1.3.10.4
Divide 80+0+0+0+0 by 1.
‾x=80+0+0+0+0
‾x=80+0+0+0+0
‾x=80+0+0+0+0
Step 1.4
Simplify by adding numbers.
Step 1.4.1
Add 80 and 0.
‾x=80+0+0+0
Step 1.4.2
Add 80 and 0.
‾x=80+0+0
Step 1.4.3
Add 80 and 0.
‾x=80+0
Step 1.4.4
Add 80 and 0.
‾x=80
‾x=80
‾x=80
Step 2
Step 2.1
Convert 400 to a decimal value.
400
Step 2.2
Convert 0 to a decimal value.
0
Step 2.3
The simplified values are 400,0,0,0,0.
400,0,0,0,0
400,0,0,0,0
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(400-80)2+(0-80)2+(0-80)2+(0-80)2+(0-80)25-1
Step 5
Step 5.1
Subtract 80 from 400.
s=√3202+(0-80)2+(0-80)2+(0-80)2+(0-80)25-1
Step 5.2
Raise 320 to the power of 2.
s=√102400+(0-80)2+(0-80)2+(0-80)2+(0-80)25-1
Step 5.3
Subtract 80 from 0.
s=√102400+(-80)2+(0-80)2+(0-80)2+(0-80)25-1
Step 5.4
Raise -80 to the power of 2.
s=√102400+6400+(0-80)2+(0-80)2+(0-80)25-1
Step 5.5
Subtract 80 from 0.
s=√102400+6400+(-80)2+(0-80)2+(0-80)25-1
Step 5.6
Raise -80 to the power of 2.
s=√102400+6400+6400+(0-80)2+(0-80)25-1
Step 5.7
Subtract 80 from 0.
s=√102400+6400+6400+(-80)2+(0-80)25-1
Step 5.8
Raise -80 to the power of 2.
s=√102400+6400+6400+6400+(0-80)25-1
Step 5.9
Subtract 80 from 0.
s=√102400+6400+6400+6400+(-80)25-1
Step 5.10
Raise -80 to the power of 2.
s=√102400+6400+6400+6400+64005-1
Step 5.11
Add 102400 and 6400.
s=√108800+6400+6400+64005-1
Step 5.12
Add 108800 and 6400.
s=√115200+6400+64005-1
Step 5.13
Add 115200 and 6400.
s=√121600+64005-1
Step 5.14
Add 121600 and 6400.
s=√1280005-1
Step 5.15
Subtract 1 from 5.
s=√1280004
Step 5.16
Divide 128000 by 4.
s=√32000
Step 5.17
Rewrite 32000 as 802⋅5.
Step 5.17.1
Factor 6400 out of 32000.
s=√6400(5)
Step 5.17.2
Rewrite 6400 as 802.
s=√802⋅5
s=√802⋅5
Step 5.18
Pull terms out from under the radical.
s=80√5
s=80√5
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
178.9