Basic Math Examples

Evaluate 4( plus or minus 1/2)^3-11( plus or minus 1/2)^2-6( plus or minus 1/2)+9
4(±12)3-11(±12)2-6(±12)+94(±12)311(±12)26(±12)+9
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Remove the plus-minus sign on ±12 because it is raised to an even power.
4(±12)3-11(12)2-6(±12)+9
Step 1.2
Apply the product rule to 12.
4(±12)3-111222-6(±12)+9
Step 1.3
One to any power is one.
4(±12)3-11122-6(±12)+9
Step 1.4
Raise 2 to the power of 2.
4(±12)3-11(14)-6(±12)+9
Step 1.5
Combine -11 and 14.
4(±12)3+-114-6(±12)+9
Step 1.6
Move the negative in front of the fraction.
4(±12)3-114-6(±12)+9
4(±12)3-114-6(±12)+9
Step 2
To write 4(±12)3 as a fraction with a common denominator, multiply by 44.
4(±12)344-114-6(±12)+9
Step 3
Combine 4(±12)3 and 44.
4(±12)344-114-6(±12)+9
Step 4
Simplify the expression.
Tap for more steps...
Step 4.1
Combine the numerators over the common denominator.
4(±12)34-114-6(±12)+9
Step 4.2
Multiply 4 by 4.
16(±12)3-114-6(±12)+9
16(±12)3-114-6(±12)+9
Step 5
To write -6(±12) as a fraction with a common denominator, multiply by 44.
16(±12)3-114-6(±12)44+9
Step 6
Combine -6(±12) and 44.
16(±12)3-114+-6(±12)44+9
Step 7
Simplify the expression.
Tap for more steps...
Step 7.1
Combine the numerators over the common denominator.
16(±12)3-11-6(±12)44+9
Step 7.2
Multiply 4 by -6.
16(±12)3-11-24(±12)4+9
16(±12)3-11-24(±12)4+9
Step 8
To write 9 as a fraction with a common denominator, multiply by 44.
16(±12)3-11-24(±12)4+944
Step 9
Combine fractions.
Tap for more steps...
Step 9.1
Combine 9 and 44.
16(±12)3-11-24(±12)4+944
Step 9.2
Combine the numerators over the common denominator.
16(±12)3-11-24(±12)+944
16(±12)3-11-24(±12)+944
Step 10
Simplify the numerator.
Tap for more steps...
Step 10.1
Multiply 9 by 4.
16(±12)3-11-24(±12)+364
Step 10.2
Add -11 and 36.
16(±12)3+25-24(±12)4
16(±12)3+25-24(±12)4
Step 11
Simplify the numerator.
Tap for more steps...
Step 11.1
Apply the product rule to 12.
161323+25-24(12)4
Step 11.2
One to any power is one.
16123+25-24(12)4
Step 11.3
Raise 2 to the power of 3.
16(18)+25-24(12)4
Step 11.4
Cancel the common factor of 8.
Tap for more steps...
Step 11.4.1
Factor 8 out of 16.
8(2)18+25-24(12)4
Step 11.4.2
Cancel the common factor.
8218+25-24(12)4
Step 11.4.3
Rewrite the expression.
2+25-24(12)4
2+25-24(12)4
Step 11.5
Cancel the common factor of 2.
Tap for more steps...
Step 11.5.1
Factor 2 out of -24.
2+25+2(-12)124
Step 11.5.2
Cancel the common factor.
2+25+2-12124
Step 11.5.3
Rewrite the expression.
2+25-124
2+25-124
Step 11.6
Add 2 and 25.
27-124
Step 11.7
Subtract 12 from 27.
154
154
Step 12
Simplify the numerator.
Tap for more steps...
Step 12.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 12.1.1
Apply the product rule to -12.
16((-1)3(12)3)+25-24(-12)4
Step 12.1.2
Apply the product rule to 12.
16((-1)31323)+25-24(-12)4
16((-1)31323)+25-24(-12)4
Step 12.2
Raise -1 to the power of 3.
16(-1323)+25-24(-12)4
Step 12.3
One to any power is one.
16(-123)+25-24(-12)4
Step 12.4
Raise 2 to the power of 3.
16(-18)+25-24(-12)4
Step 12.5
Cancel the common factor of 8.
Tap for more steps...
Step 12.5.1
Move the leading negative in -18 into the numerator.
16(-18)+25-24(-12)4
Step 12.5.2
Factor 8 out of 16.
8(2)-18+25-24(-12)4
Step 12.5.3
Cancel the common factor.
82-18+25-24(-12)4
Step 12.5.4
Rewrite the expression.
2-1+25-24(-12)4
2-1+25-24(-12)4
Step 12.6
Multiply 2 by -1.
-2+25-24(-12)4
Step 12.7
Cancel the common factor of 2.
Tap for more steps...
Step 12.7.1
Move the leading negative in -12 into the numerator.
-2+25-24(-12)4
Step 12.7.2
Factor 2 out of -24.
-2+25+2(-12)-124
Step 12.7.3
Cancel the common factor.
-2+25+2-12-124
Step 12.7.4
Rewrite the expression.
-2+25-12-14
-2+25-12-14
Step 12.8
Multiply -12 by -1.
-2+25+124
Step 12.9
Add -2 and 25.
23+124
Step 12.10
Add 23 and 12.
354
354
Step 13
The complete solution is the result of both the positive and negative portions of the solution.
154,354
Step 14
The result can be shown in multiple forms.
Exact Form:
154,354
Decimal Form:
3.75,8.75
Mixed Number Form:
334,834
 [x2  12  π  xdx ]