Enter a problem...
Basic Math Examples
24b3+2187p324b3+2187p3
Step 1
Step 1.1
Factor 33 out of 24b324b3.
3(8b3)+2187p33(8b3)+2187p3
Step 1.2
Factor 33 out of 2187p32187p3.
3(8b3)+3(729p3)3(8b3)+3(729p3)
Step 1.3
Factor 33 out of 3(8b3)+3(729p3)3(8b3)+3(729p3).
3(8b3+729p3)3(8b3+729p3)
3(8b3+729p3)3(8b3+729p3)
Step 2
Rewrite 8b38b3 as (2b)3(2b)3.
3((2b)3+729p3)3((2b)3+729p3)
Step 3
Rewrite 729p3729p3 as (9p)3(9p)3.
3((2b)3+(9p)3)3((2b)3+(9p)3)
Step 4
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2)a3+b3=(a+b)(a2−ab+b2) where a=2ba=2b and b=9pb=9p.
3((2b+9p)((2b)2-(2b)(9p)+(9p)2))3((2b+9p)((2b)2−(2b)(9p)+(9p)2))
Step 5
Step 5.1
Simplify.
Step 5.1.1
Apply the product rule to 2b2b.
3((2b+9p)(22b2-(2b)(9p)+(9p)2))3((2b+9p)(22b2−(2b)(9p)+(9p)2))
Step 5.1.2
Raise 22 to the power of 22.
3((2b+9p)(4b2-(2b)(9p)+(9p)2))3((2b+9p)(4b2−(2b)(9p)+(9p)2))
Step 5.1.3
Multiply 22 by -1−1.
3((2b+9p)(4b2-2b(9p)+(9p)2))3((2b+9p)(4b2−2b(9p)+(9p)2))
Step 5.1.4
Rewrite using the commutative property of multiplication.
3((2b+9p)(4b2-2⋅9bp+(9p)2))3((2b+9p)(4b2−2⋅9bp+(9p)2))
Step 5.1.5
Multiply -2−2 by 99.
3((2b+9p)(4b2-18bp+(9p)2))3((2b+9p)(4b2−18bp+(9p)2))
Step 5.1.6
Apply the product rule to 9p9p.
3((2b+9p)(4b2-18bp+92p2))3((2b+9p)(4b2−18bp+92p2))
Step 5.1.7
Raise 99 to the power of 22.
3((2b+9p)(4b2-18bp+81p2))3((2b+9p)(4b2−18bp+81p2))
3((2b+9p)(4b2-18bp+81p2))3((2b+9p)(4b2−18bp+81p2))
Step 5.2
Remove unnecessary parentheses.
3(2b+9p)(4b2-18bp+81p2)3(2b+9p)(4b2−18bp+81p2)
3(2b+9p)(4b2-18bp+81p2)3(2b+9p)(4b2−18bp+81p2)