Enter a problem...
Basic Math Examples
(√x+√3)(√x-√3)
Step 1
Step 1.1
Apply the distributive property.
√x(√x-√3)+√3(√x-√3)
Step 1.2
Apply the distributive property.
√x√x+√x(-√3)+√3(√x-√3)
Step 1.3
Apply the distributive property.
√x√x+√x(-√3)+√3√x+√3(-√3)
√x√x+√x(-√3)+√3√x+√3(-√3)
Step 2
Step 2.1
Combine the opposite terms in √x√x+√x(-√3)+√3√x+√3(-√3).
Step 2.1.1
Reorder the factors in the terms √x(-√3) and √3√x.
√x√x-√3√x+√3√x+√3(-√3)
Step 2.1.2
Add -√3√x and √3√x.
√x√x+0+√3(-√3)
Step 2.1.3
Add √x√x and 0.
√x√x+√3(-√3)
√x√x+√3(-√3)
Step 2.2
Simplify each term.
Step 2.2.1
Multiply √x√x.
Step 2.2.1.1
Raise √x to the power of 1.
√x1√x+√3(-√3)
Step 2.2.1.2
Raise √x to the power of 1.
√x1√x1+√3(-√3)
Step 2.2.1.3
Use the power rule aman=am+n to combine exponents.
√x1+1+√3(-√3)
Step 2.2.1.4
Add 1 and 1.
√x2+√3(-√3)
√x2+√3(-√3)
Step 2.2.2
Rewrite √x2 as x.
Step 2.2.2.1
Use n√ax=axn to rewrite √x as x12.
(x12)2+√3(-√3)
Step 2.2.2.2
Apply the power rule and multiply exponents, (am)n=amn.
x12⋅2+√3(-√3)
Step 2.2.2.3
Combine 12 and 2.
x22+√3(-√3)
Step 2.2.2.4
Cancel the common factor of 2.
Step 2.2.2.4.1
Cancel the common factor.
x22+√3(-√3)
Step 2.2.2.4.2
Rewrite the expression.
x1+√3(-√3)
x1+√3(-√3)
Step 2.2.2.5
Simplify.
x+√3(-√3)
x+√3(-√3)
Step 2.2.3
Multiply √3(-√3).
Step 2.2.3.1
Raise √3 to the power of 1.
x-(√31√3)
Step 2.2.3.2
Raise √3 to the power of 1.
x-(√31√31)
Step 2.2.3.3
Use the power rule aman=am+n to combine exponents.
x-√31+1
Step 2.2.3.4
Add 1 and 1.
x-√32
x-√32
Step 2.2.4
Rewrite √32 as 3.
Step 2.2.4.1
Use n√ax=axn to rewrite √3 as 312.
x-(312)2
Step 2.2.4.2
Apply the power rule and multiply exponents, (am)n=amn.
x-312⋅2
Step 2.2.4.3
Combine 12 and 2.
x-322
Step 2.2.4.4
Cancel the common factor of 2.
Step 2.2.4.4.1
Cancel the common factor.
x-322
Step 2.2.4.4.2
Rewrite the expression.
x-31
x-31
Step 2.2.4.5
Evaluate the exponent.
x-1⋅3
x-1⋅3
Step 2.2.5
Multiply -1 by 3.
x-3
x-3
x-3