Enter a problem...
Basic Math Examples
334⋅215334⋅215
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
(3+34)⋅215(3+34)⋅215
Step 1.2
Add 33 and 3434.
Step 1.2.1
To write 33 as a fraction with a common denominator, multiply by 4444.
(3⋅44+34)⋅215(3⋅44+34)⋅215
Step 1.2.2
Combine 33 and 4444.
(3⋅44+34)⋅215(3⋅44+34)⋅215
Step 1.2.3
Combine the numerators over the common denominator.
3⋅4+34⋅2153⋅4+34⋅215
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 33 by 44.
12+34⋅21512+34⋅215
Step 1.2.4.2
Add 1212 and 33.
154⋅215154⋅215
154⋅215154⋅215
154⋅215154⋅215
154⋅215154⋅215
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
154⋅(2+15)154⋅(2+15)
Step 2.2
Add 22 and 1515.
Step 2.2.1
To write 22 as a fraction with a common denominator, multiply by 5555.
154⋅(2⋅55+15)154⋅(2⋅55+15)
Step 2.2.2
Combine 22 and 5555.
154⋅(2⋅55+15)154⋅(2⋅55+15)
Step 2.2.3
Combine the numerators over the common denominator.
154⋅2⋅5+15154⋅2⋅5+15
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 22 by 55.
154⋅10+15154⋅10+15
Step 2.2.4.2
Add 1010 and 11.
154⋅115154⋅115
154⋅115154⋅115
154⋅115154⋅115
154⋅115154⋅115
Step 3
Step 3.1
Factor 55 out of 1515.
5(3)4⋅1155(3)4⋅115
Step 3.2
Cancel the common factor.
5⋅34⋅115
Step 3.3
Rewrite the expression.
34⋅11
34⋅11
Step 4
Combine 34 and 11.
3⋅114
Step 5
Multiply 3 by 11.
334
Step 6
The result can be shown in multiple forms.
Exact Form:
334
Decimal Form:
8.25
Mixed Number Form:
814