Enter a problem...
Basic Math Examples
6+i2+i
Step 1
Multiply the numerator and denominator of 6+i2+1i by the conjugate of 2+1i to make the denominator real.
6+i2+1i⋅2-i2-i
Step 2
Step 2.1
Combine.
(6+i)(2-i)(2+1i)(2-i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (6+i)(2-i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
6(2-i)+i(2-i)(2+1i)(2-i)
Step 2.2.1.2
Apply the distributive property.
6⋅2+6(-i)+i(2-i)(2+1i)(2-i)
Step 2.2.1.3
Apply the distributive property.
6⋅2+6(-i)+i⋅2+i(-i)(2+1i)(2-i)
6⋅2+6(-i)+i⋅2+i(-i)(2+1i)(2-i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 6 by 2.
12+6(-i)+i⋅2+i(-i)(2+1i)(2-i)
Step 2.2.2.1.2
Multiply -1 by 6.
12-6i+i⋅2+i(-i)(2+1i)(2-i)
Step 2.2.2.1.3
Move 2 to the left of i.
12-6i+2⋅i+i(-i)(2+1i)(2-i)
Step 2.2.2.1.4
Multiply i(-i).
Step 2.2.2.1.4.1
Raise i to the power of 1.
12-6i+2i-(i1i)(2+1i)(2-i)
Step 2.2.2.1.4.2
Raise i to the power of 1.
12-6i+2i-(i1i1)(2+1i)(2-i)
Step 2.2.2.1.4.3
Use the power rule aman=am+n to combine exponents.
12-6i+2i-i1+1(2+1i)(2-i)
Step 2.2.2.1.4.4
Add 1 and 1.
12-6i+2i-i2(2+1i)(2-i)
12-6i+2i-i2(2+1i)(2-i)
Step 2.2.2.1.5
Rewrite i2 as -1.
12-6i+2i--1(2+1i)(2-i)
Step 2.2.2.1.6
Multiply -1 by -1.
12-6i+2i+1(2+1i)(2-i)
12-6i+2i+1(2+1i)(2-i)
Step 2.2.2.2
Add 12 and 1.
13-6i+2i(2+1i)(2-i)
Step 2.2.2.3
Add -6i and 2i.
13-4i(2+1i)(2-i)
13-4i(2+1i)(2-i)
13-4i(2+1i)(2-i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (2+1i)(2-i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
13-4i2(2-i)+1i(2-i)
Step 2.3.1.2
Apply the distributive property.
13-4i2⋅2+2(-i)+1i(2-i)
Step 2.3.1.3
Apply the distributive property.
13-4i2⋅2+2(-i)+1i⋅2+1i(-i)
13-4i2⋅2+2(-i)+1i⋅2+1i(-i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 2 by 2.
13-4i4+2(-i)+1i⋅2+1i(-i)
Step 2.3.2.2
Multiply -1 by 2.
13-4i4-2i+1i⋅2+1i(-i)
Step 2.3.2.3
Multiply 2 by 1.
13-4i4-2i+2i+1i(-i)
Step 2.3.2.4
Multiply -1 by 1.
13-4i4-2i+2i-ii
Step 2.3.2.5
Raise i to the power of 1.
13-4i4-2i+2i-(i1i)
Step 2.3.2.6
Raise i to the power of 1.
13-4i4-2i+2i-(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
13-4i4-2i+2i-i1+1
Step 2.3.2.8
Add 1 and 1.
13-4i4-2i+2i-i2
Step 2.3.2.9
Add -2i and 2i.
13-4i4+0-i2
Step 2.3.2.10
Add 4 and 0.
13-4i4-i2
13-4i4-i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
13-4i4--1
Step 2.3.3.2
Multiply -1 by -1.
13-4i4+1
13-4i4+1
Step 2.3.4
Add 4 and 1.
13-4i5
13-4i5
13-4i5
Step 3
Split the fraction 13-4i5 into two fractions.
135+-4i5
Step 4
Move the negative in front of the fraction.
135-4i5