Enter a problem...
Basic Math Examples
1200⋅cos(90)+500⋅cos(30)+1500⋅cos(180)+2200⋅cos(200)1200⋅cos(90)+500⋅cos(30)+1500⋅cos(180)+2200⋅cos(200)
Step 1
Step 1.1
The exact value of cos(90) is 0.
1200⋅0+500⋅cos(30)+1500⋅cos(180)+2200⋅cos(200)
Step 1.2
Multiply 1200 by 0.
0+500⋅cos(30)+1500⋅cos(180)+2200⋅cos(200)
Step 1.3
The exact value of cos(30) is √32.
0+500⋅√32+1500⋅cos(180)+2200⋅cos(200)
Step 1.4
Cancel the common factor of 2.
Step 1.4.1
Factor 2 out of 500.
0+2(250)⋅√32+1500⋅cos(180)+2200⋅cos(200)
Step 1.4.2
Cancel the common factor.
0+2⋅250⋅√32+1500⋅cos(180)+2200⋅cos(200)
Step 1.4.3
Rewrite the expression.
0+250⋅√3+1500⋅cos(180)+2200⋅cos(200)
0+250⋅√3+1500⋅cos(180)+2200⋅cos(200)
Step 1.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
0+250√3+1500⋅(-cos(0))+2200⋅cos(200)
Step 1.6
The exact value of cos(0) is 1.
0+250√3+1500⋅(-1⋅1)+2200⋅cos(200)
Step 1.7
Multiply 1500(-1⋅1).
Step 1.7.1
Multiply -1 by 1.
0+250√3+1500⋅-1+2200⋅cos(200)
Step 1.7.2
Multiply 1500 by -1.
0+250√3-1500+2200⋅cos(200)
0+250√3-1500+2200⋅cos(200)
Step 1.8
Evaluate cos(200).
0+250√3-1500+2200⋅-0.93969262
Step 1.9
Multiply 2200 by -0.93969262.
0+250√3-1500-2067.32376572
0+250√3-1500-2067.32376572
Step 2
Step 2.1
Add 0 and 250√3.
250√3-1500-2067.32376572
Step 2.2
Subtract 2067.32376572 from -1500.
250√3-3567.32376572
250√3-3567.32376572
Step 3
The result can be shown in multiple forms.
Exact Form:
250√3-3567.32376572
Decimal Form:
-3134.31106383…