Basic Math Examples

Convert to a Simplified Fraction 4.66666667
4.64.¯6
Step 1
Create two equations where the only numbers to the right of the decimal place are the repeating part.
Step 2
Set up an equation with 0.60.¯6.
x=0.6x=0.¯6
Step 3
Multiply both sides of x=0.6x=0.¯6 by 1010 to create the second equation.
10x=6.610x=6.¯6
Step 4
Subtract x=0.6x=0.¯6 from 10x=6.610x=6.¯6 to remove the repeating part.
9x=69x=6
Step 5
Divide each term in 9x=69x=6 by 99 and simplify.
Tap for more steps...
Step 5.1
Divide each term in 9x=69x=6 by 99.
9x9=699x9=69
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of 99.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
9x9=69
Step 5.2.1.2
Divide x by 1.
x=69
x=69
x=69
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Cancel the common factor of 6 and 9.
Tap for more steps...
Step 5.3.1.1
Factor 3 out of 6.
x=3(2)9
Step 5.3.1.2
Cancel the common factors.
Tap for more steps...
Step 5.3.1.2.1
Factor 3 out of 9.
x=3233
Step 5.3.1.2.2
Cancel the common factor.
x=3233
Step 5.3.1.2.3
Rewrite the expression.
x=23
x=23
x=23
x=23
x=23
Step 6
Write as a mixed number by taking the whole number part along with the solution to the equation.
423
Step 7
Convert 423 to an improper fraction.
Tap for more steps...
Step 7.1
A mixed number is an addition of its whole and fractional parts.
4+23
Step 7.2
Add 4 and 23.
Tap for more steps...
Step 7.2.1
To write 4 as a fraction with a common denominator, multiply by 33.
433+23
Step 7.2.2
Combine 4 and 33.
433+23
Step 7.2.3
Combine the numerators over the common denominator.
43+23
Step 7.2.4
Simplify the numerator.
Tap for more steps...
Step 7.2.4.1
Multiply 4 by 3.
12+23
Step 7.2.4.2
Add 12 and 2.
143
143
143
143
 [x2  12  π  xdx ]