Enter a problem...
Basic Math Examples
55 , 00 , 00 , 0(0.0051-(1+0.005)-60)0(0.0051−(1+0.005)−60)
Step 1
Step 1.1
Add 11 and 0.0050.005.
5,0,0,0(0.0051-1.005-60)5,0,0,0(0.0051−1.005−60)
Step 1.2
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
5,0,0,0(0.0051-11.00560)5,0,0,0⎛⎝0.0051−11.00560⎞⎠
Step 1.3
Raise 1.0051.005 to the power of 6060.
5,0,0,0(0.0051-11.34885015)5,0,0,0(0.0051−11.34885015)
Step 1.4
Divide 11 by 1.348850151.34885015.
5,0,0,0(0.0051-1⋅0.74137219)5,0,0,0(0.0051−1⋅0.74137219)
Step 1.5
Multiply -1−1 by 0.741372190.74137219.
5,0,0,0(0.0051-0.74137219)5,0,0,0(0.0051−0.74137219)
Step 1.6
Subtract 0.741372190.74137219 from 11.
5,0,0,0(0.0050.2586278)5,0,0,0(0.0050.2586278)
5,0,0,0(0.0050.2586278)5,0,0,0(0.0050.2586278)
Step 2
Step 2.1
Divide 0.0050.005 by 0.25862780.2586278.
5,0,0,0⋅0.01933285,0,0,0⋅0.0193328
Step 2.2
Multiply 00 by 0.01933280.0193328.
5,0,0,05,0,0,0
5,0,0,05,0,0,0
Step 3
The mean of a set of numbers is the sum divided by the number of terms.
5+0+0+045+0+0+04
Step 4
Step 4.1
Add 5+0+05+0+0 and 00.
5+0+045+0+04
Step 4.2
Add 5+05+0 and 00.
5+045+04
Step 4.3
Add 55 and 00.
5454
5454
Step 5
Divide.
1.251.25
Step 6
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
1.31.3