Basic Math Examples

Evaluate (-(40) plus or minus square root of (40)^2-4*1*-400)/(2(1))
-(40)±(40)2-41-4002(1)(40)±(40)2414002(1)
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Multiply -11 by 4040.
-40±402-41-4002(1)40±402414002(1)
Step 1.2
Pull terms out from under the radical, assuming positive real numbers.
-40±40-41-4002(1)40±40414002(1)
Step 1.3
Multiply -41-40041400.
Tap for more steps...
Step 1.3.1
Multiply -44 by 11.
-40±40-4-4002(1)40±4044002(1)
Step 1.3.2
Multiply -44 by -400400.
-40±40+16002(1)40±40+16002(1)
-40±40+16002(1)40±40+16002(1)
-40±40+16002(1)40±40+16002(1)
Step 2
Simplify with factoring out.
Tap for more steps...
Step 2.1
Multiply 22 by 11.
-40±40+1600240±40+16002
Step 2.2
Factor -11 out of -40±4040±40.
-1(-(-40±40))+160021((40±40))+16002
Step 2.3
Rewrite 16001600 as -1(-1600)1(1600).
-1(-(-40±40))-1(-1600)21((40±40))1(1600)2
Step 2.4
Factor -11 out of -1(-(-40±40))-1(-1600)1((40±40))1(1600).
-1(-(-40±40)-1600)21((40±40)1600)2
Step 2.5
Move the negative in front of the fraction.
--(-40±40)-16002(40±40)16002
--(-40±40)-16002(40±40)16002
Step 3
Use the positive value of the ±± to find the first solution.
Tap for more steps...
Step 3.1
Cancel the common factor of -(-40+40)-1600(40+40)1600 and 22.
Tap for more steps...
Step 3.1.1
Rewrite -16001600 as -1(1600)1(1600).
--(-40+40)-1(1600)2(40+40)1(1600)2
Step 3.1.2
Factor -11 out of -(-40+40)-1(1600)(40+40)1(1600).
--(-40+40+1600)2(40+40+1600)2
Step 3.1.3
Rewrite -(-40+40+1600)(40+40+1600) as -1(-40+40+1600)1(40+40+1600).
--1(-40+40+1600)21(40+40+1600)2
Step 3.1.4
Factor 22 out of -1(-40+40+1600)1(40+40+1600).
-2(-1(-20+20+800))22(1(20+20+800))2
Step 3.1.5
Cancel the common factors.
Tap for more steps...
Step 3.1.5.1
Factor 22 out of 22.
-2(-1(-20+20+800))2(1)2(1(20+20+800))2(1)
Step 3.1.5.2
Cancel the common factor.
-2(-1(-20+20+800))21
Step 3.1.5.3
Rewrite the expression.
--1(-20+20+800)1
Step 3.1.5.4
Divide -1(-20+20+800) by 1.
-(-1(-20+20+800))
-(-1(-20+20+800))
-(-1(-20+20+800))
Step 3.2
Simplify the expression.
Tap for more steps...
Step 3.2.1
Rewrite -1(-20+20+800) as -(-20+20+800).
--(-20+20+800)
Step 3.2.2
Add -20 and 20.
--(0+800)
Step 3.2.3
Add 0 and 800.
-(-1800)
-(-1800)
Step 3.3
Multiply -(-1800).
Tap for more steps...
Step 3.3.1
Multiply -1 by 800.
--800
Step 3.3.2
Multiply -1 by -800.
800
800
800
Step 4
Use the negative value of the ± to find the second solution.
Tap for more steps...
Step 4.1
Cancel the common factor of -(-40-40)-1600 and 2.
Tap for more steps...
Step 4.1.1
Rewrite -1600 as -1(1600).
--(-40-40)-1(1600)2
Step 4.1.2
Factor -1 out of -(-40-40)-1(1600).
--(-40-40+1600)2
Step 4.1.3
Rewrite -(-40-40+1600) as -1(-40-40+1600).
--1(-40-40+1600)2
Step 4.1.4
Factor 2 out of -1(-40-40+1600).
-2(-1(-20-20+800))2
Step 4.1.5
Cancel the common factors.
Tap for more steps...
Step 4.1.5.1
Factor 2 out of 2.
-2(-1(-20-20+800))2(1)
Step 4.1.5.2
Cancel the common factor.
-2(-1(-20-20+800))21
Step 4.1.5.3
Rewrite the expression.
--1(-20-20+800)1
Step 4.1.5.4
Divide -1(-20-20+800) by 1.
-(-1(-20-20+800))
-(-1(-20-20+800))
-(-1(-20-20+800))
Step 4.2
Simplify the expression.
Tap for more steps...
Step 4.2.1
Rewrite -1(-20-20+800) as -(-20-20+800).
--(-20-20+800)
Step 4.2.2
Subtract 20 from -20.
--(-40+800)
Step 4.2.3
Add -40 and 800.
-(-1760)
-(-1760)
Step 4.3
Multiply -(-1760).
Tap for more steps...
Step 4.3.1
Multiply -1 by 760.
--760
Step 4.3.2
Multiply -1 by -760.
760
760
760
Step 5
The complete solution is the result of both the positive and negative portions of the solution.
800,760
 [x2  12  π  xdx ]