Basic Math Examples

Find the Mean 13.5 , 3.5 , 5.7 , 2.9 , 5.5 , 2.7 , 4.7 , 2.1 , 4.2 , 1.8
13.513.5 , 3.53.5 , 5.75.7 , 2.92.9 , 5.55.5 , 2.72.7 , 4.74.7 , 2.12.1 , 4.24.2 , 1.81.8
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
13.5+3.5+5.7+2.9+5.5+2.7+4.7+2.1+4.2+1.81013.5+3.5+5.7+2.9+5.5+2.7+4.7+2.1+4.2+1.810
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Add 13.513.5 and 3.53.5.
17+5.7+2.9+5.5+2.7+4.7+2.1+4.2+1.81017+5.7+2.9+5.5+2.7+4.7+2.1+4.2+1.810
Step 2.2
Add 1717 and 5.75.7.
22.7+2.9+5.5+2.7+4.7+2.1+4.2+1.81022.7+2.9+5.5+2.7+4.7+2.1+4.2+1.810
Step 2.3
Add 22.722.7 and 2.92.9.
25.6+5.5+2.7+4.7+2.1+4.2+1.81025.6+5.5+2.7+4.7+2.1+4.2+1.810
Step 2.4
Add 25.625.6 and 5.55.5.
31.1+2.7+4.7+2.1+4.2+1.81031.1+2.7+4.7+2.1+4.2+1.810
Step 2.5
Add 31.131.1 and 2.72.7.
33.8+4.7+2.1+4.2+1.81033.8+4.7+2.1+4.2+1.810
Step 2.6
Add 33.833.8 and 4.74.7.
38.5+2.1+4.2+1.81038.5+2.1+4.2+1.810
Step 2.7
Add 38.538.5 and 2.12.1.
40.6+4.2+1.81040.6+4.2+1.810
Step 2.8
Add 40.640.6 and 4.24.2.
44.8+1.81044.8+1.810
Step 2.9
Add 44.844.8 and 1.81.8.
46.61046.610
46.61046.610
Step 3
Divide 46.646.6 by 1010.
4.664.66
Step 4
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
4.664.66
 [x2  12  π  xdx ]  x2  12  π  xdx