Basic Math Examples

Find the Mean 8.7 , 8.8 , 8.9 , 9.4 , 10.2 , 9.8 , 9.0 , 8.1 , 9.5
8.78.7 , 8.88.8 , 8.98.9 , 9.49.4 , 10.210.2 , 9.89.8 , 99 , 8.18.1 , 9.59.5
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
8.7+8.8+8.9+9.4+10.2+9.8+9+8.1+9.598.7+8.8+8.9+9.4+10.2+9.8+9+8.1+9.59
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Add 8.78.7 and 8.88.8.
17.5+8.9+9.4+10.2+9.8+9+8.1+9.5917.5+8.9+9.4+10.2+9.8+9+8.1+9.59
Step 2.2
Add 17.517.5 and 8.98.9.
26.4+9.4+10.2+9.8+9+8.1+9.5926.4+9.4+10.2+9.8+9+8.1+9.59
Step 2.3
Add 26.426.4 and 9.49.4.
35.8+10.2+9.8+9+8.1+9.5935.8+10.2+9.8+9+8.1+9.59
Step 2.4
Add 35.835.8 and 10.210.2.
46+9.8+9+8.1+9.5946+9.8+9+8.1+9.59
Step 2.5
Add 4646 and 9.89.8.
55.8+9+8.1+9.5955.8+9+8.1+9.59
Step 2.6
Add 55.855.8 and 99.
64.8+8.1+9.5964.8+8.1+9.59
Step 2.7
Add 64.864.8 and 8.18.1.
72.9+9.5972.9+9.59
Step 2.8
Add 72.972.9 and 9.59.5.
82.4982.49
82.4982.49
Step 3
Divide 82.482.4 by 99.
9.159.1¯5
Step 4
Divide.
9.159.1¯5
Step 5
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
9.169.16
 [x2  12  π  xdx ]  x2  12  π  xdx