Enter a problem...
Basic Math Examples
314⋅223314⋅223
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
(3+14)⋅223(3+14)⋅223
Step 1.2
Add 33 and 1414.
Step 1.2.1
To write 33 as a fraction with a common denominator, multiply by 4444.
(3⋅44+14)⋅223(3⋅44+14)⋅223
Step 1.2.2
Combine 33 and 4444.
(3⋅44+14)⋅223(3⋅44+14)⋅223
Step 1.2.3
Combine the numerators over the common denominator.
3⋅4+14⋅2233⋅4+14⋅223
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 33 by 44.
12+14⋅22312+14⋅223
Step 1.2.4.2
Add 1212 and 11.
134⋅223134⋅223
134⋅223134⋅223
134⋅223134⋅223
134⋅223134⋅223
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
134⋅(2+23)134⋅(2+23)
Step 2.2
Add 22 and 2323.
Step 2.2.1
To write 22 as a fraction with a common denominator, multiply by 3333.
134⋅(2⋅33+23)134⋅(2⋅33+23)
Step 2.2.2
Combine 22 and 3333.
134⋅(2⋅33+23)134⋅(2⋅33+23)
Step 2.2.3
Combine the numerators over the common denominator.
134⋅2⋅3+23134⋅2⋅3+23
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 22 by 33.
134⋅6+23134⋅6+23
Step 2.2.4.2
Add 66 and 22.
134⋅83134⋅83
134⋅83134⋅83
134⋅83134⋅83
134⋅83134⋅83
Step 3
Step 3.1
Factor 44 out of 88.
134⋅4(2)3134⋅4(2)3
Step 3.2
Cancel the common factor.
134⋅4⋅23
Step 3.3
Rewrite the expression.
13⋅23
13⋅23
Step 4
Combine 13 and 23.
13⋅23
Step 5
Multiply 13 by 2.
263
Step 6
The result can be shown in multiple forms.
Exact Form:
263
Decimal Form:
8.‾6
Mixed Number Form:
823