Enter a problem...
Basic Math Examples
-223⋅4110−223⋅4110
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
-(2+23)⋅4110−(2+23)⋅4110
Step 1.2
Add 22 and 2323.
Step 1.2.1
To write 22 as a fraction with a common denominator, multiply by 3333.
-(2⋅33+23)⋅4110−(2⋅33+23)⋅4110
Step 1.2.2
Combine 22 and 3333.
-(2⋅33+23)⋅4110−(2⋅33+23)⋅4110
Step 1.2.3
Combine the numerators over the common denominator.
-2⋅3+23⋅4110−2⋅3+23⋅4110
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 22 by 33.
-6+23⋅4110−6+23⋅4110
Step 1.2.4.2
Add 66 and 22.
-83⋅4110−83⋅4110
-83⋅4110−83⋅4110
-83⋅4110−83⋅4110
-83⋅4110−83⋅4110
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
-83⋅(4+110)−83⋅(4+110)
Step 2.2
Add 44 and 110110.
Step 2.2.1
To write 44 as a fraction with a common denominator, multiply by 10101010.
-83⋅(4⋅1010+110)−83⋅(4⋅1010+110)
Step 2.2.2
Combine 44 and 10101010.
-83⋅(4⋅1010+110)−83⋅(4⋅1010+110)
Step 2.2.3
Combine the numerators over the common denominator.
-83⋅4⋅10+110−83⋅4⋅10+110
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 44 by 1010.
-83⋅40+110−83⋅40+110
Step 2.2.4.2
Add 4040 and 11.
-83⋅4110−83⋅4110
-83⋅4110−83⋅4110
-83⋅4110−83⋅4110
-83⋅4110−83⋅4110
Step 3
Step 3.1
Move the leading negative in -83−83 into the numerator.
-83⋅4110−83⋅4110
Step 3.2
Factor 2 out of -8.
2(-4)3⋅4110
Step 3.3
Factor 2 out of 10.
2⋅-43⋅412⋅5
Step 3.4
Cancel the common factor.
2⋅-43⋅412⋅5
Step 3.5
Rewrite the expression.
-43⋅415
-43⋅415
Step 4
Multiply -43 by 415.
-4⋅413⋅5
Step 5
Step 5.1
Multiply -4 by 41.
-1643⋅5
Step 5.2
Multiply 3 by 5.
-16415
Step 5.3
Move the negative in front of the fraction.
-16415
-16415
Step 6
The result can be shown in multiple forms.
Exact Form:
-16415
Decimal Form:
-10.9‾3
Mixed Number Form:
-101415