Enter a problem...
Basic Math Examples
√11212√11212
Step 1
Step 1.1
Factor 44 out of 112112.
√4(28)12√4(28)12
Step 1.2
Cancel the common factors.
Step 1.2.1
Factor 44 out of 1212.
√4⋅284⋅3√4⋅284⋅3
Step 1.2.2
Cancel the common factor.
√4⋅284⋅3
Step 1.2.3
Rewrite the expression.
√283
√283
√283
Step 2
Rewrite √283 as √28√3.
√28√3
Step 3
Step 3.1
Rewrite 28 as 22⋅7.
Step 3.1.1
Factor 4 out of 28.
√4(7)√3
Step 3.1.2
Rewrite 4 as 22.
√22⋅7√3
√22⋅7√3
Step 3.2
Pull terms out from under the radical.
2√7√3
2√7√3
Step 4
Multiply 2√7√3 by √3√3.
2√7√3⋅√3√3
Step 5
Step 5.1
Multiply 2√7√3 by √3√3.
2√7√3√3√3
Step 5.2
Raise √3 to the power of 1.
2√7√3√31√3
Step 5.3
Raise √3 to the power of 1.
2√7√3√31√31
Step 5.4
Use the power rule aman=am+n to combine exponents.
2√7√3√31+1
Step 5.5
Add 1 and 1.
2√7√3√32
Step 5.6
Rewrite √32 as 3.
Step 5.6.1
Use n√ax=axn to rewrite √3 as 312.
2√7√3(312)2
Step 5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
2√7√3312⋅2
Step 5.6.3
Combine 12 and 2.
2√7√3322
Step 5.6.4
Cancel the common factor of 2.
Step 5.6.4.1
Cancel the common factor.
2√7√3322
Step 5.6.4.2
Rewrite the expression.
2√7√331
2√7√331
Step 5.6.5
Evaluate the exponent.
2√7√33
2√7√33
2√7√33
Step 6
Step 6.1
Combine using the product rule for radicals.
2√3⋅73
Step 6.2
Multiply 3 by 7.
2√213
2√213
Step 7
The result can be shown in multiple forms.
Exact Form:
2√213
Decimal Form:
3.05505046…