Enter a problem...
Basic Math Examples
42√29⋅√80
Step 1
Step 1.1
Combine using the product rule for radicals.
42√29⋅80
Step 1.2
Multiply 29 by 80.
42√2320
42√2320
Step 2
Step 2.1
Rewrite 2320 as 42⋅145.
Step 2.1.1
Factor 16 out of 2320.
42√16(145)
Step 2.1.2
Rewrite 16 as 42.
42√42⋅145
42√42⋅145
Step 2.2
Pull terms out from under the radical.
424√145
424√145
Step 3
Step 3.1
Factor 2 out of 42.
2(21)4√145
Step 3.2
Cancel the common factors.
Step 3.2.1
Factor 2 out of 4√145.
2(21)2(2√145)
Step 3.2.2
Cancel the common factor.
2⋅212(2√145)
Step 3.2.3
Rewrite the expression.
212√145
212√145
212√145
Step 4
Multiply 212√145 by √145√145.
212√145⋅√145√145
Step 5
Step 5.1
Multiply 212√145 by √145√145.
21√1452√145√145
Step 5.2
Move √145.
21√1452(√145√145)
Step 5.3
Raise √145 to the power of 1.
21√1452(√1451√145)
Step 5.4
Raise √145 to the power of 1.
21√1452(√1451√1451)
Step 5.5
Use the power rule aman=am+n to combine exponents.
21√1452√1451+1
Step 5.6
Add 1 and 1.
21√1452√1452
Step 5.7
Rewrite √1452 as 145.
Step 5.7.1
Use n√ax=axn to rewrite √145 as 14512.
21√1452(14512)2
Step 5.7.2
Apply the power rule and multiply exponents, (am)n=amn.
21√1452⋅14512⋅2
Step 5.7.3
Combine 12 and 2.
21√1452⋅14522
Step 5.7.4
Cancel the common factor of 2.
Step 5.7.4.1
Cancel the common factor.
21√1452⋅14522
Step 5.7.4.2
Rewrite the expression.
21√1452⋅1451
21√1452⋅1451
Step 5.7.5
Evaluate the exponent.
21√1452⋅145
21√1452⋅145
21√1452⋅145
Step 6
Multiply 2 by 145.
21√145290
Step 7
The result can be shown in multiple forms.
Exact Form:
21√145290
Decimal Form:
0.87197753…