Basic Math Examples

Simplify ((6k^3)/(k^2-4))÷(((28k^7)/(-6k+12))/((14k+28)/k))
6k3k2-4÷28k7-6k+1214k+28k6k3k24÷28k76k+1214k+28k
Step 1
To divide by a fraction, multiply by its reciprocal.
6k3k2-414k+28k28k7-6k+12
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Rewrite 4 as 22.
6k3k2-2214k+28k28k7-6k+12
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=k and b=2.
6k3(k+2)(k-2)14k+28k28k7-6k+12
6k3(k+2)(k-2)14k+28k28k7-6k+12
Step 3
Simplify terms.
Tap for more steps...
Step 3.1
Combine.
6k314k+28k(k+2)(k-2)28k7-6k+12
Step 3.2
Cancel the common factor of 28 and -6k+12.
Tap for more steps...
Step 3.2.1
Factor 2 out of 28k7.
6k314k+28k(k+2)(k-2)2(14k7)-6k+12
Step 3.2.2
Cancel the common factors.
Tap for more steps...
Step 3.2.2.1
Factor 2 out of -6k.
6k314k+28k(k+2)(k-2)2(14k7)2(-3k)+12
Step 3.2.2.2
Factor 2 out of 12.
6k314k+28k(k+2)(k-2)2(14k7)2(-3k)+2(6)
Step 3.2.2.3
Factor 2 out of 2(-3k)+2(6).
6k314k+28k(k+2)(k-2)2(14k7)2(-3k+6)
Step 3.2.2.4
Cancel the common factor.
6k314k+28k(k+2)(k-2)2(14k7)2(-3k+6)
Step 3.2.2.5
Rewrite the expression.
6k314k+28k(k+2)(k-2)14k7-3k+6
6k314k+28k(k+2)(k-2)14k7-3k+6
6k314k+28k(k+2)(k-2)14k7-3k+6
Step 3.3
Factor 14 out of 14k+28.
Tap for more steps...
Step 3.3.1
Factor 14 out of 14k.
6k314(k)+28k(k+2)(k-2)14k7-3k+6
Step 3.3.2
Factor 14 out of 28.
6k314k+142k(k+2)(k-2)14k7-3k+6
Step 3.3.3
Factor 14 out of 14k+142.
6k314(k+2)k(k+2)(k-2)14k7-3k+6
6k314(k+2)k(k+2)(k-2)14k7-3k+6
Step 3.4
Factor 3 out of -3k+6.
Tap for more steps...
Step 3.4.1
Factor 3 out of -3k.
6k314(k+2)k(k+2)(k-2)14k73(-k)+6
Step 3.4.2
Factor 3 out of 6.
6k314(k+2)k(k+2)(k-2)14k73(-k)+3(2)
Step 3.4.3
Factor 3 out of 3(-k)+3(2).
6k314(k+2)k(k+2)(k-2)14k73(-k+2)
6k314(k+2)k(k+2)(k-2)14k73(-k+2)
6k314(k+2)k(k+2)(k-2)14k73(-k+2)
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Combine 6 and 14(k+2)k.
k36(14(k+2))k(k+2)(k-2)14k73(-k+2)
Step 4.2
Combine k3 and 6(14(k+2))k.
k3(6(14(k+2)))k(k+2)(k-2)14k73(-k+2)
k3(6(14(k+2)))k(k+2)(k-2)14k73(-k+2)
Step 5
Multiply 6 by 14.
k3(84(k+2))k(k+2)(k-2)14k73(-k+2)
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
Rewrite.
k3(6(14(k+2)))k(k+2)(k-2)14k73(-k+2)
Step 6.2
Multiply 6 by 14.
k3(84(k+2))k(k+2)(k-2)14k73(-k+2)
Step 6.3
Remove unnecessary parentheses.
k384(k+2)k(k+2)(k-2)14k73(-k+2)
k384(k+2)k(k+2)(k-2)14k73(-k+2)
Step 7
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 7.1
Reduce the expression k384(k+2)k by cancelling the common factors.
Tap for more steps...
Step 7.1.1
Factor k out of k384(k+2).
k(k284(k+2))k(k+2)(k-2)14k73(-k+2)
Step 7.1.2
Raise k to the power of 1.
k(k284(k+2))k1(k+2)(k-2)14k73(-k+2)
Step 7.1.3
Factor k out of k1.
k(k284(k+2))k1(k+2)(k-2)14k73(-k+2)
Step 7.1.4
Cancel the common factor.
k(k284(k+2))k1(k+2)(k-2)14k73(-k+2)
Step 7.1.5
Rewrite the expression.
k284(k+2)1(k+2)(k-2)14k73(-k+2)
k284(k+2)1(k+2)(k-2)14k73(-k+2)
Step 7.2
Divide k284(k+2) by 1.
k284(k+2)(k+2)(k-2)14k73(-k+2)
k284(k+2)(k+2)(k-2)14k73(-k+2)
Step 8
Cancel the common factor of k+2.
Tap for more steps...
Step 8.1
Cancel the common factor.
k284(k+2)(k+2)(k-2)14k73(-k+2)
Step 8.2
Rewrite the expression.
k284(k-2)14k73(-k+2)
k284(k-2)14k73(-k+2)
Step 9
Move 84 to the left of k2.
84k2(k-2)14k73(-k+2)
Step 10
Factor 14k73(-k+2) out of 84k2(k-2)14k73(-k+2).
3(-k+2)14k784k2k-2
Step 11
Simplify terms.
Tap for more steps...
Step 11.1
Cancel the common factor of 14k2.
Tap for more steps...
Step 11.1.1
Factor 14k2 out of 14k7.
3(-k+2)14k2(k5)84k2k-2
Step 11.1.2
Factor 14k2 out of 84k2.
3(-k+2)14k2(k5)14k2(6)k-2
Step 11.1.3
Cancel the common factor.
3(-k+2)14k2k514k26k-2
Step 11.1.4
Rewrite the expression.
3(-k+2)k56k-2
3(-k+2)k56k-2
Step 11.2
Multiply 3(-k+2)k5 by 6k-2.
3(-k+2)6k5(k-2)
Step 11.3
Multiply 6 by 3.
18(-k+2)k5(k-2)
Step 11.4
Cancel the common factor of -k+2 and k-2.
Tap for more steps...
Step 11.4.1
Factor -1 out of -k.
18(-(k)+2)k5(k-2)
Step 11.4.2
Rewrite 2 as -1(-2).
18(-(k)-1(-2))k5(k-2)
Step 11.4.3
Factor -1 out of -(k)-1(-2).
18(-(k-2))k5(k-2)
Step 11.4.4
Rewrite -(k-2) as -1(k-2).
18(-1(k-2))k5(k-2)
Step 11.4.5
Cancel the common factor.
18(-1(k-2))k5(k-2)
Step 11.4.6
Rewrite the expression.
18(-1)k5
18(-1)k5
18(-1)k5
Step 12
Multiply 18 by -1.
-18k5
Step 13
Move the negative in front of the fraction.
-18k5
 [x2  12  π  xdx ]