Enter a problem...
Basic Math Examples
6k3k2-4÷28k7-6k+1214k+28k6k3k2−4÷28k7−6k+1214k+28k
Step 1
To divide by a fraction, multiply by its reciprocal.
6k3k2-4⋅14k+28k28k7-6k+12
Step 2
Step 2.1
Rewrite 4 as 22.
6k3k2-22⋅14k+28k28k7-6k+12
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=k and b=2.
6k3(k+2)(k-2)⋅14k+28k28k7-6k+12
6k3(k+2)(k-2)⋅14k+28k28k7-6k+12
Step 3
Step 3.1
Combine.
6k314k+28k(k+2)(k-2)28k7-6k+12
Step 3.2
Cancel the common factor of 28 and -6k+12.
Step 3.2.1
Factor 2 out of 28k7.
6k314k+28k(k+2)(k-2)2(14k7)-6k+12
Step 3.2.2
Cancel the common factors.
Step 3.2.2.1
Factor 2 out of -6k.
6k314k+28k(k+2)(k-2)2(14k7)2(-3k)+12
Step 3.2.2.2
Factor 2 out of 12.
6k314k+28k(k+2)(k-2)2(14k7)2(-3k)+2(6)
Step 3.2.2.3
Factor 2 out of 2(-3k)+2(6).
6k314k+28k(k+2)(k-2)2(14k7)2(-3k+6)
Step 3.2.2.4
Cancel the common factor.
6k314k+28k(k+2)(k-2)2(14k7)2(-3k+6)
Step 3.2.2.5
Rewrite the expression.
6k314k+28k(k+2)(k-2)14k7-3k+6
6k314k+28k(k+2)(k-2)14k7-3k+6
6k314k+28k(k+2)(k-2)14k7-3k+6
Step 3.3
Factor 14 out of 14k+28.
Step 3.3.1
Factor 14 out of 14k.
6k314(k)+28k(k+2)(k-2)14k7-3k+6
Step 3.3.2
Factor 14 out of 28.
6k314k+14⋅2k(k+2)(k-2)14k7-3k+6
Step 3.3.3
Factor 14 out of 14k+14⋅2.
6k314(k+2)k(k+2)(k-2)14k7-3k+6
6k314(k+2)k(k+2)(k-2)14k7-3k+6
Step 3.4
Factor 3 out of -3k+6.
Step 3.4.1
Factor 3 out of -3k.
6k314(k+2)k(k+2)(k-2)14k73(-k)+6
Step 3.4.2
Factor 3 out of 6.
6k314(k+2)k(k+2)(k-2)14k73(-k)+3(2)
Step 3.4.3
Factor 3 out of 3(-k)+3(2).
6k314(k+2)k(k+2)(k-2)14k73(-k+2)
6k314(k+2)k(k+2)(k-2)14k73(-k+2)
6k314(k+2)k(k+2)(k-2)14k73(-k+2)
Step 4
Step 4.1
Combine 6 and 14(k+2)k.
k36(14(k+2))k(k+2)(k-2)14k73(-k+2)
Step 4.2
Combine k3 and 6(14(k+2))k.
k3(6(14(k+2)))k(k+2)(k-2)14k73(-k+2)
k3(6(14(k+2)))k(k+2)(k-2)14k73(-k+2)
Step 5
Multiply 6 by 14.
k3(84(k+2))k(k+2)(k-2)14k73(-k+2)
Step 6
Step 6.1
Rewrite.
k3(6(14(k+2)))k(k+2)(k-2)14k73(-k+2)
Step 6.2
Multiply 6 by 14.
k3(84(k+2))k(k+2)(k-2)14k73(-k+2)
Step 6.3
Remove unnecessary parentheses.
k3⋅84(k+2)k(k+2)(k-2)14k73(-k+2)
k3⋅84(k+2)k(k+2)(k-2)14k73(-k+2)
Step 7
Step 7.1
Reduce the expression k3⋅84(k+2)k by cancelling the common factors.
Step 7.1.1
Factor k out of k3⋅84(k+2).
k(k2⋅84(k+2))k(k+2)(k-2)14k73(-k+2)
Step 7.1.2
Raise k to the power of 1.
k(k2⋅84(k+2))k1(k+2)(k-2)14k73(-k+2)
Step 7.1.3
Factor k out of k1.
k(k2⋅84(k+2))k⋅1(k+2)(k-2)14k73(-k+2)
Step 7.1.4
Cancel the common factor.
k(k2⋅84(k+2))k⋅1(k+2)(k-2)14k73(-k+2)
Step 7.1.5
Rewrite the expression.
k2⋅84(k+2)1(k+2)(k-2)14k73(-k+2)
k2⋅84(k+2)1(k+2)(k-2)14k73(-k+2)
Step 7.2
Divide k2⋅84(k+2) by 1.
k2⋅84(k+2)(k+2)(k-2)14k73(-k+2)
k2⋅84(k+2)(k+2)(k-2)14k73(-k+2)
Step 8
Step 8.1
Cancel the common factor.
k2⋅84(k+2)(k+2)(k-2)14k73(-k+2)
Step 8.2
Rewrite the expression.
k2⋅84(k-2)14k73(-k+2)
k2⋅84(k-2)14k73(-k+2)
Step 9
Move 84 to the left of k2.
84⋅k2(k-2)14k73(-k+2)
Step 10
Factor 14k73(-k+2) out of 84⋅k2(k-2)14k73(-k+2).
3(-k+2)14k7⋅84⋅k2k-2
Step 11
Step 11.1
Cancel the common factor of 14⋅k2.
Step 11.1.1
Factor 14⋅k2 out of 14k7.
3(-k+2)14k2(k5)⋅84⋅k2k-2
Step 11.1.2
Factor 14⋅k2 out of 84⋅k2.
3(-k+2)14k2(k5)⋅14k2(6)k-2
Step 11.1.3
Cancel the common factor.
3(-k+2)14k2k5⋅14k2⋅6k-2
Step 11.1.4
Rewrite the expression.
3(-k+2)k5⋅6k-2
3(-k+2)k5⋅6k-2
Step 11.2
Multiply 3(-k+2)k5 by 6k-2.
3(-k+2)⋅6k5(k-2)
Step 11.3
Multiply 6 by 3.
18(-k+2)k5(k-2)
Step 11.4
Cancel the common factor of -k+2 and k-2.
Step 11.4.1
Factor -1 out of -k.
18(-(k)+2)k5(k-2)
Step 11.4.2
Rewrite 2 as -1(-2).
18(-(k)-1(-2))k5(k-2)
Step 11.4.3
Factor -1 out of -(k)-1(-2).
18(-(k-2))k5(k-2)
Step 11.4.4
Rewrite -(k-2) as -1(k-2).
18(-1(k-2))k5(k-2)
Step 11.4.5
Cancel the common factor.
18(-1(k-2))k5(k-2)
Step 11.4.6
Rewrite the expression.
18⋅(-1)k5
18⋅(-1)k5
18⋅(-1)k5
Step 12
Multiply 18 by -1.
-18k5
Step 13
Move the negative in front of the fraction.
-18k5