Enter a problem...
Basic Math Examples
√2a√5a-√3b√2a√5a−√3b
Step 1
Multiply √2a√5a-√3b by √5a+√3b√5a+√3b.
√2a√5a-√3b⋅√5a+√3b√5a+√3b
Step 2
Multiply √2a√5a-√3b by √5a+√3b√5a+√3b.
√2a(√5a+√3b)(√5a-√3b)(√5a+√3b)
Step 3
Expand the denominator using the FOIL method.
√2a(√5a+√3b)√5a2+√15ab-√15ab-√3b2
Step 4
Step 4.1
Rewrite √5a2 as 5a.
Step 4.1.1
Use n√ax=axn to rewrite √5a as (5a)12.
√2a(√5a+√3b)((5a)12)2-√3b2
Step 4.1.2
Apply the power rule and multiply exponents, (am)n=amn.
√2a(√5a+√3b)(5a)12⋅2-√3b2
Step 4.1.3
Combine 12 and 2.
√2a(√5a+√3b)(5a)22-√3b2
Step 4.1.4
Cancel the common factor of 2.
Step 4.1.4.1
Cancel the common factor.
√2a(√5a+√3b)(5a)22-√3b2
Step 4.1.4.2
Rewrite the expression.
√2a(√5a+√3b)(5a)1-√3b2
√2a(√5a+√3b)(5a)1-√3b2
Step 4.1.5
Simplify.
√2a(√5a+√3b)5a-√3b2
√2a(√5a+√3b)5a-√3b2
Step 4.2
Rewrite √3b2 as 3b.
Step 4.2.1
Use n√ax=axn to rewrite √3b as (3b)12.
√2a(√5a+√3b)5a-((3b)12)2
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn.
√2a(√5a+√3b)5a-(3b)12⋅2
Step 4.2.3
Combine 12 and 2.
√2a(√5a+√3b)5a-(3b)22
Step 4.2.4
Cancel the common factor of 2.
Step 4.2.4.1
Cancel the common factor.
√2a(√5a+√3b)5a-(3b)22
Step 4.2.4.2
Rewrite the expression.
√2a(√5a+√3b)5a-(3b)1
√2a(√5a+√3b)5a-(3b)1
Step 4.2.5
Simplify.
√2a(√5a+√3b)5a-(3b)
√2a(√5a+√3b)5a-(3b)
Step 4.3
Multiply 3 by -1.
√2a(√5a+√3b)5a-3b
√2a(√5a+√3b)5a-3b
Step 5
Apply the distributive property.
√2a√5a+√2a√3b5a-3b
Step 6
Step 6.1
Combine using the product rule for radicals.
√2a(5a)+√2a√3b5a-3b
Step 6.2
Multiply 5 by 2.
√10a⋅a+√2a√3b5a-3b
Step 6.3
Raise a to the power of 1.
√10(a1a)+√2a√3b5a-3b
Step 6.4
Raise a to the power of 1.
√10(a1a1)+√2a√3b5a-3b
Step 6.5
Use the power rule aman=am+n to combine exponents.
√10a1+1+√2a√3b5a-3b
Step 6.6
Add 1 and 1.
√10a2+√2a√3b5a-3b
√10a2+√2a√3b5a-3b
Step 7
Step 7.1
Combine using the product rule for radicals.
√10a2+√2a(3b)5a-3b
Step 7.2
Multiply 3 by 2.
√10a2+√6ab5a-3b
√10a2+√6ab5a-3b
Step 8
Step 8.1
Reorder 10 and a2.
√a2⋅10+√6ab5a-3b
Step 8.2
Pull terms out from under the radical.
a√10+√6ab5a-3b
a√10+√6ab5a-3b
Step 9
Step 9.1
Use n√ax=axn to rewrite √10 as 1012.
a⋅1012+√6ab5a-3b
Step 9.2
Use n√ax=axn to rewrite √6ab as (6ab)12.
a⋅1012+(6ab)125a-3b
Step 9.3
Use the power rule (ab)n=anbn to distribute the exponent.
Step 9.3.1
Apply the product rule to 6ab.
a⋅1012+(6a)12b125a-3b
Step 9.3.2
Apply the product rule to 6a.
a⋅1012+612a12b125a-3b
a⋅1012+612a12b125a-3b
Step 9.4
Factor a12 out of a⋅1012+612a12b12.
Step 9.4.1
Reorder a and 1012.
1012⋅a+612a12b125a-3b
Step 9.4.2
Factor a12 out of 1012⋅a.
a12(1012⋅a12)+612a12b125a-3b
Step 9.4.3
Factor a12 out of 612a12b12.
a12(1012⋅a12)+a12(612b12)5a-3b
Step 9.4.4
Factor a12 out of a12(1012⋅a12)+a12(612b12).
a12(1012⋅a12+612b12)5a-3b
a12(1012a12+612b12)5a-3b
a12(1012a12+612b12)5a-3b