Basic Math Examples

Simplify ( square root of 2a)/( square root of 5a- square root of 3b)
2a5a-3b2a5a3b
Step 1
Multiply 2a5a-3b by 5a+3b5a+3b.
2a5a-3b5a+3b5a+3b
Step 2
Multiply 2a5a-3b by 5a+3b5a+3b.
2a(5a+3b)(5a-3b)(5a+3b)
Step 3
Expand the denominator using the FOIL method.
2a(5a+3b)5a2+15ab-15ab-3b2
Step 4
Simplify.
Tap for more steps...
Step 4.1
Rewrite 5a2 as 5a.
Tap for more steps...
Step 4.1.1
Use nax=axn to rewrite 5a as (5a)12.
2a(5a+3b)((5a)12)2-3b2
Step 4.1.2
Apply the power rule and multiply exponents, (am)n=amn.
2a(5a+3b)(5a)122-3b2
Step 4.1.3
Combine 12 and 2.
2a(5a+3b)(5a)22-3b2
Step 4.1.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.1.4.1
Cancel the common factor.
2a(5a+3b)(5a)22-3b2
Step 4.1.4.2
Rewrite the expression.
2a(5a+3b)(5a)1-3b2
2a(5a+3b)(5a)1-3b2
Step 4.1.5
Simplify.
2a(5a+3b)5a-3b2
2a(5a+3b)5a-3b2
Step 4.2
Rewrite 3b2 as 3b.
Tap for more steps...
Step 4.2.1
Use nax=axn to rewrite 3b as (3b)12.
2a(5a+3b)5a-((3b)12)2
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn.
2a(5a+3b)5a-(3b)122
Step 4.2.3
Combine 12 and 2.
2a(5a+3b)5a-(3b)22
Step 4.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.4.1
Cancel the common factor.
2a(5a+3b)5a-(3b)22
Step 4.2.4.2
Rewrite the expression.
2a(5a+3b)5a-(3b)1
2a(5a+3b)5a-(3b)1
Step 4.2.5
Simplify.
2a(5a+3b)5a-(3b)
2a(5a+3b)5a-(3b)
Step 4.3
Multiply 3 by -1.
2a(5a+3b)5a-3b
2a(5a+3b)5a-3b
Step 5
Apply the distributive property.
2a5a+2a3b5a-3b
Step 6
Multiply 2a5a.
Tap for more steps...
Step 6.1
Combine using the product rule for radicals.
2a(5a)+2a3b5a-3b
Step 6.2
Multiply 5 by 2.
10aa+2a3b5a-3b
Step 6.3
Raise a to the power of 1.
10(a1a)+2a3b5a-3b
Step 6.4
Raise a to the power of 1.
10(a1a1)+2a3b5a-3b
Step 6.5
Use the power rule aman=am+n to combine exponents.
10a1+1+2a3b5a-3b
Step 6.6
Add 1 and 1.
10a2+2a3b5a-3b
10a2+2a3b5a-3b
Step 7
Multiply 2a3b.
Tap for more steps...
Step 7.1
Combine using the product rule for radicals.
10a2+2a(3b)5a-3b
Step 7.2
Multiply 3 by 2.
10a2+6ab5a-3b
10a2+6ab5a-3b
Step 8
Simplify each term.
Tap for more steps...
Step 8.1
Reorder 10 and a2.
a210+6ab5a-3b
Step 8.2
Pull terms out from under the radical.
a10+6ab5a-3b
a10+6ab5a-3b
Step 9
Simplify the numerator.
Tap for more steps...
Step 9.1
Use nax=axn to rewrite 10 as 1012.
a1012+6ab5a-3b
Step 9.2
Use nax=axn to rewrite 6ab as (6ab)12.
a1012+(6ab)125a-3b
Step 9.3
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 9.3.1
Apply the product rule to 6ab.
a1012+(6a)12b125a-3b
Step 9.3.2
Apply the product rule to 6a.
a1012+612a12b125a-3b
a1012+612a12b125a-3b
Step 9.4
Factor a12 out of a1012+612a12b12.
Tap for more steps...
Step 9.4.1
Reorder a and 1012.
1012a+612a12b125a-3b
Step 9.4.2
Factor a12 out of 1012a.
a12(1012a12)+612a12b125a-3b
Step 9.4.3
Factor a12 out of 612a12b12.
a12(1012a12)+a12(612b12)5a-3b
Step 9.4.4
Factor a12 out of a12(1012a12)+a12(612b12).
a12(1012a12+612b12)5a-3b
a12(1012a12+612b12)5a-3b
a12(1012a12+612b12)5a-3b
 [x2  12  π  xdx ]