Enter a problem...
Basic Math Examples
3√(-3)0-1933+0.14÷3-243-(7÷√4⋅7+5√(-32)4-24⋅(532)-1)
Step 1
Step 1.1
Multiply 3√(-3)0-1933+0.14÷3-243-(7÷√4⋅7+5√(-32)4-24⋅(532)-1) by 3⋅3-23⋅3-2.
3⋅3-23⋅3-2⋅3√(-3)0-1933+0.14÷3-243-(7÷√4⋅7+5√(-32)4-24⋅(532)-1)
Step 1.2
Combine.
3⋅3-2(3√(-3)0-1933+0.14÷3-2)3⋅3-2(43-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
3⋅3-2(3√(-3)0-1933+0.14÷3-2)3⋅3-2(43-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
Step 2
Apply the distributive property.
3⋅3-23√(-3)0-1933+3⋅3-20.14÷3-23⋅3-243+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
Step 3
Step 3.1
Cancel the common factor of 3.
Step 3.1.1
Factor 3 out of 3⋅3-2.
3⋅3-23√(-3)0-1933+3⋅3-20.14÷3-23(3-2)43+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
Step 3.1.2
Cancel the common factor.
3⋅3-23√(-3)0-1933+3⋅3-20.14÷3-23⋅3-243+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
Step 3.1.3
Rewrite the expression.
3⋅3-23√(-3)0-1933+3⋅3-20.14÷3-23-2⋅4+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
3⋅3-23√(-3)0-1933+3⋅3-20.14÷3-23-2⋅4+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
Step 3.2
Raise 3 to the power of 3.
3⋅3-23√(-3)0-1927+3⋅3-20.14÷3-23-2⋅4+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
3⋅3-23√(-3)0-1927+3⋅3-20.14÷3-23-2⋅4+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
Step 4
Step 4.1
Rewrite the expression using the negative exponent rule b-n=1bn.
3⋅3-23√(-3)0-1927+3⋅3-20.14÷1323-2⋅4+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
Step 4.2
Raise 3 to the power of 2.
3⋅3-23√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
3⋅3-23√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷√4⋅7+5√(-32)4-24⋅(532)-1))
Step 5
Step 5.1
Rewrite 4 as 22.
3⋅3-23√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷√22⋅7+5√(-32)4-24⋅(532)-1))
Step 5.2
Pull terms out from under the radical, assuming positive real numbers.
3⋅3-23√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
3⋅3-23√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6
Step 6.1
Multiply 3 by 3-2 by adding the exponents.
Step 6.1.1
Multiply 3 by 3-2.
Step 6.1.1.1
Raise 3 to the power of 1.
31⋅3-23√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.1.1.2
Use the power rule aman=am+n to combine exponents.
31-23√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
31-23√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.1.2
Subtract 2 from 1.
3-13√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
3-13√(-3)0-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.2
Simplify 3-13√(-3)0-1927.
3-13√1-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.3
Rewrite the expression using the negative exponent rule b-n=1bn.
133√1-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.4
Write 1 as a fraction with a common denominator.
133√2727-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.5
Combine the numerators over the common denominator.
133√27-1927+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.6
Subtract 19 from 27.
133√827+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.7
Rewrite 3√827 as 3√83√27.
13⋅3√83√27+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.8
Simplify the numerator.
Step 6.8.1
Rewrite 8 as 23.
13⋅3√233√27+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.8.2
Pull terms out from under the radical, assuming real numbers.
13⋅23√27+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
13⋅23√27+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.9
Simplify the denominator.
Step 6.9.1
Rewrite 27 as 33.
13⋅23√33+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.9.2
Pull terms out from under the radical, assuming real numbers.
13⋅23+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
13⋅23+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.10
Multiply 13⋅23.
Step 6.10.1
Multiply 13 by 23.
23⋅3+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.10.2
Multiply 3 by 3.
29+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
29+3⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.11
Multiply 3 by 3-2 by adding the exponents.
Step 6.11.1
Multiply 3 by 3-2.
Step 6.11.1.1
Raise 3 to the power of 1.
29+31⋅3-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.11.1.2
Use the power rule aman=am+n to combine exponents.
29+31-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
29+31-20.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.11.2
Subtract 2 from 1.
29+3-10.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
29+3-10.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.12
Rewrite the expression using the negative exponent rule b-n=1bn.
29+13⋅0.14÷193-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.13
To divide by a fraction, multiply by its reciprocal.
29+13(0.14⋅9)3-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.14
Multiply 0.14 by 9.
29+13⋅1.263-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.15
Combine 13 and 1.26.
29+1.2633-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.16
Divide 1.26 by 3.
29+0.423-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.17
To write 0.42 as a fraction with a common denominator, multiply by 99.
29+0.42⋅993-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.18
Combine 0.42 and 99.
29+0.42⋅993-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.19
Combine the numerators over the common denominator.
2+0.42⋅993-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.20
Rewrite 2+0.42⋅99 in a factored form.
Step 6.20.1
Multiply 0.42 by 9.
2+3.7893-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.20.2
Add 2 and 3.78.
5.7893-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 6.20.3
Divide 5.78 by 9.
0.64‾23-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
0.64‾23-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
0.64‾23-2⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 7
Step 7.1
Rewrite the expression using the negative exponent rule b-n=1bn.
0.64‾2132⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 7.2
Raise 3 to the power of 2.
0.64‾219⋅4+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 7.3
Combine 19 and 4.
0.64‾249+3⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 7.4
Multiply 3 by 3-2 by adding the exponents.
Step 7.4.1
Multiply 3 by 3-2.
Step 7.4.1.1
Raise 3 to the power of 1.
0.64‾249+31⋅3-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 7.4.1.2
Use the power rule aman=am+n to combine exponents.
0.64‾249+31-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
0.64‾249+31-2(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 7.4.2
Subtract 2 from 1.
0.64‾249+3-1(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
0.64‾249+3-1(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 7.5
Rewrite the expression using the negative exponent rule b-n=1bn.
0.64‾249+13(-(7÷2⋅7+5√(-32)4-24⋅(532)-1))
Step 7.6
Simplify each term.
Step 7.6.1
Rewrite the division as a fraction.
0.64‾249+13(-(72⋅7+5√(-32)4-24⋅(532)-1))
Step 7.6.2
Multiply 72⋅7.
Step 7.6.2.1
Combine 72 and 7.
0.64‾249+13(-(7⋅72+5√(-32)4-24⋅(532)-1))
Step 7.6.2.2
Multiply 7 by 7.
0.64‾249+13(-(492+5√(-32)4-24⋅(532)-1))
0.64‾249+13(-(492+5√(-32)4-24⋅(532)-1))
Step 7.6.3
Use the power rule (ab)n=anbn to distribute the exponent.
Step 7.6.3.1
Apply the product rule to -32.
0.64‾249+13(-(492+5√(-1)4(32)4-24⋅(532)-1))
Step 7.6.3.2
Apply the product rule to 32.
0.64‾249+13(-(492+5√(-1)43424-24⋅(532)-1))
0.64‾249+13(-(492+5√(-1)43424-24⋅(532)-1))
Step 7.6.4
Raise -1 to the power of 4.
0.64‾249+13(-(492+5√13424-24⋅(532)-1))
Step 7.6.5
Multiply 3424 by 1.
0.64‾249+13(-(492+5√3424-24⋅(532)-1))
Step 7.6.6
Raise 3 to the power of 4.
0.64‾249+13(-(492+5√8124-24⋅(532)-1))
Step 7.6.7
Raise 2 to the power of 4.
0.64‾249+13(-(492+5√8116-24⋅(532)-1))
Step 7.6.8
Raise 2 to the power of 4.
0.64‾249+13(-(492+5√8116-1⋅16⋅(532)-1))
Step 7.6.9
Multiply -1 by 16.
0.64‾249+13(-(492+5√8116-16⋅(532)-1))
Step 7.6.10
To write -16 as a fraction with a common denominator, multiply by 1616.
0.64‾249+13(-(492+5√8116-16⋅1616⋅(532)-1))
Step 7.6.11
Combine -16 and 1616.
0.64‾249+13(-(492+5√8116+-16⋅1616⋅(532)-1))
Step 7.6.12
Combine the numerators over the common denominator.
0.64‾249+13(-(492+5√81-16⋅1616⋅(532)-1))
Step 7.6.13
Simplify the numerator.
Step 7.6.13.1
Multiply -16 by 16.
0.64‾249+13(-(492+5√81-25616⋅(532)-1))
Step 7.6.13.2
Subtract 256 from 81.
0.64‾249+13(-(492+5√-17516⋅(532)-1))
0.64‾249+13(-(492+5√-17516⋅(532)-1))
Step 7.6.14
Move the negative in front of the fraction.
0.64‾249+13(-(492+5√-17516⋅(532)-1))
Step 7.6.15
Rewrite -17516 as ((-1)5)517516.
Step 7.6.15.1
Rewrite -1 as (-1)5.
0.64‾249+13(-(492+5√(-1)517516⋅(532)-1))
Step 7.6.15.2
Rewrite -1 as (-1)5.
0.64‾249+13(-(492+5√((-1)5)517516⋅(532)-1))
0.64‾249+13(-(492+5√((-1)5)517516⋅(532)-1))
Step 7.6.16
Pull terms out from under the radical.
0.64‾249+13(-(492+(-1)55√17516⋅(532)-1))
Step 7.6.17
Raise -1 to the power of 5.
0.64‾249+13(-(492-5√17516⋅(532)-1))
Step 7.6.18
Rewrite 5√17516 as 5√1755√16.
0.64‾249+13(-(492-5√1755√16⋅(532)-1))
Step 7.6.19
Multiply 5√1755√16 by 5√1645√164.
0.64‾249+13(-(492-(5√1755√16⋅5√1645√164)⋅(532)-1))
Step 7.6.20
Combine and simplify the denominator.
Step 7.6.20.1
Multiply 5√1755√16 by 5√1645√164.
0.64‾249+13(-(492-5√1755√1645√165√164⋅(532)-1))
Step 7.6.20.2
Raise 5√16 to the power of 1.
0.64‾249+13(-(492-5√1755√1645√1615√164⋅(532)-1))
Step 7.6.20.3
Use the power rule aman=am+n to combine exponents.
0.64‾249+13(-(492-5√1755√1645√161+4⋅(532)-1))
Step 7.6.20.4
Add 1 and 4.
0.64‾249+13(-(492-5√1755√1645√165⋅(532)-1))
Step 7.6.20.5
Rewrite 5√165 as 16.
Step 7.6.20.5.1
Use n√ax=axn to rewrite 5√16 as 1615.
0.64‾249+13(-(492-5√1755√164(1615)5⋅(532)-1))
Step 7.6.20.5.2
Apply the power rule and multiply exponents, (am)n=amn.
0.64‾249+13(-(492-5√1755√1641615⋅5⋅(532)-1))
Step 7.6.20.5.3
Combine 15 and 5.
0.64‾249+13(-(492-5√1755√1641655⋅(532)-1))
Step 7.6.20.5.4
Cancel the common factor of 5.
Step 7.6.20.5.4.1
Cancel the common factor.
0.64‾249+13(-(492-5√1755√1641655⋅(532)-1))
Step 7.6.20.5.4.2
Rewrite the expression.
0.64‾249+13(-(492-5√1755√164161⋅(532)-1))
0.64‾249+13(-(492-5√1755√164161⋅(532)-1))
Step 7.6.20.5.5
Evaluate the exponent.
0.64‾249+13(-(492-5√1755√16416⋅(532)-1))
0.64‾249+13(-(492-5√1755√16416⋅(532)-1))
0.64‾249+13(-(492-5√1755√16416⋅(532)-1))
Step 7.6.21
Simplify the numerator.
Step 7.6.21.1
Rewrite 5√164 as 5√164.
0.64‾249+13(-(492-5√1755√16416⋅(532)-1))
Step 7.6.21.2
Raise 16 to the power of 4.
0.64‾249+13(-(492-5√1755√6553616⋅(532)-1))
Step 7.6.21.3
Rewrite 65536 as 85⋅2.
Step 7.6.21.3.1
Factor 32768 out of 65536.
0.64‾249+13(-(492-5√1755√32768(2)16⋅(532)-1))
Step 7.6.21.3.2
Rewrite 32768 as 85.
0.64‾249+13(-(492-5√1755√85⋅216⋅(532)-1))
0.64‾249+13(-(492-5√1755√85⋅216⋅(532)-1))
Step 7.6.21.4
Pull terms out from under the radical.
0.64‾249+13(-(492-5√175⋅85√216⋅(532)-1))
Step 7.6.21.5
Combine exponents.
Step 7.6.21.5.1
Combine using the product rule for radicals.
0.64‾249+13(-(492-85√175⋅216⋅(532)-1))
Step 7.6.21.5.2
Multiply 175 by 2.
0.64‾249+13(-(492-85√35016⋅(532)-1))
0.64‾249+13(-(492-85√35016⋅(532)-1))
0.64‾249+13(-(492-85√35016⋅(532)-1))
Step 7.6.22
Cancel the common factor of 8 and 16.
Step 7.6.22.1
Factor 8 out of 85√350.
0.64‾249+13(-(492-8(5√350)16⋅(532)-1))
Step 7.6.22.2
Cancel the common factors.
Step 7.6.22.2.1
Factor 8 out of 16.
0.64‾249+13(-(492-85√3508⋅2⋅(532)-1))
Step 7.6.22.2.2
Cancel the common factor.
0.64‾249+13(-(492-85√3508⋅2⋅(532)-1))
Step 7.6.22.2.3
Rewrite the expression.
0.64‾249+13(-(492-5√3502⋅(532)-1))
0.64‾249+13(-(492-5√3502⋅(532)-1))
0.64‾249+13(-(492-5√3502⋅(532)-1))
Step 7.6.23
Change the sign of the exponent by rewriting the base as its reciprocal.
0.64‾249+13(-(492-5√3502⋅325))
Step 7.6.24
Cancel the common factor of 2.
Step 7.6.24.1
Move the leading negative in -5√3502 into the numerator.
0.64‾249+13(-(492+-5√3502⋅325))
Step 7.6.24.2
Factor 2 out of 32.
0.64‾249+13(-(492+-5√3502⋅2(16)5))
Step 7.6.24.3
Cancel the common factor.
0.64‾249+13(-(492+-5√3502⋅2⋅165))
Step 7.6.24.4
Rewrite the expression.
0.64‾249+13(-(492-5√350⋅165))
0.64‾249+13(-(492-5√350⋅165))
Step 7.6.25
Combine 165 and 5√350.
0.64‾249+13(-(492-165√3505))
0.64‾249+13(-(492-165√3505))
Step 7.7
To write 492 as a fraction with a common denominator, multiply by 55.
0.64‾249+13(-(492⋅55-165√3505))
Step 7.8
To write -165√3505 as a fraction with a common denominator, multiply by 22.
0.64‾249+13(-(492⋅55-165√3505⋅22))
Step 7.9
Write each expression with a common denominator of 10, by multiplying each by an appropriate factor of 1.
Step 7.9.1
Multiply 492 by 55.
0.64‾249+13(-(49⋅52⋅5-165√3505⋅22))
Step 7.9.2
Multiply 2 by 5.
0.64‾249+13(-(49⋅510-165√3505⋅22))
Step 7.9.3
Multiply 165√3505 by 22.
0.64‾249+13(-(49⋅510-165√350⋅25⋅2))
Step 7.9.4
Multiply 5 by 2.
0.64‾249+13(-(49⋅510-165√350⋅210))
0.64‾249+13(-(49⋅510-165√350⋅210))
Step 7.10
Combine the numerators over the common denominator.
0.64‾249+13(-49⋅5-165√350⋅210)
Step 7.11
Simplify the numerator.
Step 7.11.1
Multiply 49 by 5.
0.64‾249+13(-245-165√350⋅210)
Step 7.11.2
Multiply 2 by -16.
0.64‾249+13(-245-325√35010)
0.64‾249+13(-245-325√35010)
Step 7.12
Multiply 13(-245-325√35010).
Step 7.12.1
Multiply 13 by 245-325√35010.
0.64‾249-245-325√3503⋅10
Step 7.12.2
Multiply 3 by 10.
0.64‾249-245-325√35030
0.64‾249-245-325√35030
Step 7.13
To write 49 as a fraction with a common denominator, multiply by 1010.
0.64‾249⋅1010-245-325√35030
Step 7.14
To write -245-325√35030 as a fraction with a common denominator, multiply by 33.
0.64‾249⋅1010-245-325√35030⋅33
Step 7.15
Write each expression with a common denominator of 90, by multiplying each by an appropriate factor of 1.
Step 7.15.1
Multiply 49 by 1010.
0.64‾24⋅109⋅10-245-325√35030⋅33
Step 7.15.2
Multiply 9 by 10.
0.64‾24⋅1090-245-325√35030⋅33
Step 7.15.3
Multiply 245-325√35030 by 33.
0.64‾24⋅1090-(245-325√350)⋅330⋅3
Step 7.15.4
Multiply 30 by 3.
0.64‾24⋅1090-(245-325√350)⋅390
0.64‾24⋅1090-(245-325√350)⋅390
Step 7.16
Combine the numerators over the common denominator.
0.64‾24⋅10-(245-325√350)⋅390
Step 7.17
Rewrite 4⋅10-(245-325√350)⋅390 in a factored form.
Step 7.17.1
Multiply 4 by 10.
0.64‾240-(245-325√350)⋅390
Step 7.17.2
Apply the distributive property.
0.64‾240+(-1⋅245-(-325√350))⋅390
Step 7.17.3
Multiply -1 by 245.
0.64‾240+(-245-(-325√350))⋅390
Step 7.17.4
Multiply -32 by -1.
0.64‾240+(-245+325√350)⋅390
Step 7.17.5
Apply the distributive property.
0.64‾240-245⋅3+325√350⋅390
Step 7.17.6
Multiply -245 by 3.
0.64‾240-735+325√350⋅390
Step 7.17.7
Multiply 3 by 32.
0.64‾240-735+965√35090
Step 7.17.8
Subtract 735 from 40.
0.64‾2-695+965√35090
0.64‾2-695+965√35090
0.64‾2-695+965√35090
Step 8
Multiply the numerator by the reciprocal of the denominator.
0.64‾290-695+965√350
Step 9
Step 9.1
Combine 0.64‾2 and 90-695+965√350.
0.64‾2⋅90-695+965√350
Step 9.2
Multiply 0.64‾2 by 90.
57.7‾9-695+965√350
57.7‾9-695+965√350
Step 10
Evaluate the root.
57.7‾9-695+96⋅3.2271088
Step 11
Multiply 96 by 3.2271088.
57.7‾9-695+309.80244568
Step 12
Add -695 and 309.80244568.
57.7‾9-385.19755431
Step 13
Divide 57.7‾9 by -385.19755431.
-0.15005287