Basic Math Examples

Simplify ( cube root of (-3)^0-19/(3^3)+0.14÷(3^-2))/(4/3-(7÷( square root of 4)*7+ fifth root of (-3/2)^4-2^4*(5/32)^-1))
3(-3)0-1933+0.14÷3-243-(7÷47+5(-32)4-24(532)-1)
Step 1
Multiply the numerator and denominator of the fraction by 33-2.
Tap for more steps...
Step 1.1
Multiply 3(-3)0-1933+0.14÷3-243-(7÷47+5(-32)4-24(532)-1) by 33-233-2.
33-233-23(-3)0-1933+0.14÷3-243-(7÷47+5(-32)4-24(532)-1)
Step 1.2
Combine.
33-2(3(-3)0-1933+0.14÷3-2)33-2(43-(7÷47+5(-32)4-24(532)-1))
33-2(3(-3)0-1933+0.14÷3-2)33-2(43-(7÷47+5(-32)4-24(532)-1))
Step 2
Apply the distributive property.
33-23(-3)0-1933+33-20.14÷3-233-243+33-2(-(7÷47+5(-32)4-24(532)-1))
Step 3
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.1
Cancel the common factor of 3.
Tap for more steps...
Step 3.1.1
Factor 3 out of 33-2.
33-23(-3)0-1933+33-20.14÷3-23(3-2)43+33-2(-(7÷47+5(-32)4-24(532)-1))
Step 3.1.2
Cancel the common factor.
33-23(-3)0-1933+33-20.14÷3-233-243+33-2(-(7÷47+5(-32)4-24(532)-1))
Step 3.1.3
Rewrite the expression.
33-23(-3)0-1933+33-20.14÷3-23-24+33-2(-(7÷47+5(-32)4-24(532)-1))
33-23(-3)0-1933+33-20.14÷3-23-24+33-2(-(7÷47+5(-32)4-24(532)-1))
Step 3.2
Raise 3 to the power of 3.
33-23(-3)0-1927+33-20.14÷3-23-24+33-2(-(7÷47+5(-32)4-24(532)-1))
33-23(-3)0-1927+33-20.14÷3-23-24+33-2(-(7÷47+5(-32)4-24(532)-1))
Step 4
Simplify the denominator.
Tap for more steps...
Step 4.1
Rewrite the expression using the negative exponent rule b-n=1bn.
33-23(-3)0-1927+33-20.14÷1323-24+33-2(-(7÷47+5(-32)4-24(532)-1))
Step 4.2
Raise 3 to the power of 2.
33-23(-3)0-1927+33-20.14÷193-24+33-2(-(7÷47+5(-32)4-24(532)-1))
33-23(-3)0-1927+33-20.14÷193-24+33-2(-(7÷47+5(-32)4-24(532)-1))
Step 5
Simplify the denominator.
Tap for more steps...
Step 5.1
Rewrite 4 as 22.
33-23(-3)0-1927+33-20.14÷193-24+33-2(-(7÷227+5(-32)4-24(532)-1))
Step 5.2
Pull terms out from under the radical, assuming positive real numbers.
33-23(-3)0-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
33-23(-3)0-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
Multiply 3 by 3-2 by adding the exponents.
Tap for more steps...
Step 6.1.1
Multiply 3 by 3-2.
Tap for more steps...
Step 6.1.1.1
Raise 3 to the power of 1.
313-23(-3)0-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.1.1.2
Use the power rule aman=am+n to combine exponents.
31-23(-3)0-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
31-23(-3)0-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.1.2
Subtract 2 from 1.
3-13(-3)0-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
3-13(-3)0-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.2
Simplify 3-13(-3)0-1927.
3-131-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.3
Rewrite the expression using the negative exponent rule b-n=1bn.
1331-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.4
Write 1 as a fraction with a common denominator.
1332727-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.5
Combine the numerators over the common denominator.
13327-1927+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.6
Subtract 19 from 27.
133827+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.7
Rewrite 3827 as 38327.
1338327+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.8
Simplify the numerator.
Tap for more steps...
Step 6.8.1
Rewrite 8 as 23.
13323327+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.8.2
Pull terms out from under the radical, assuming real numbers.
132327+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
132327+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.9
Simplify the denominator.
Tap for more steps...
Step 6.9.1
Rewrite 27 as 33.
132333+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.9.2
Pull terms out from under the radical, assuming real numbers.
1323+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
1323+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.10
Multiply 1323.
Tap for more steps...
Step 6.10.1
Multiply 13 by 23.
233+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.10.2
Multiply 3 by 3.
29+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
29+33-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.11
Multiply 3 by 3-2 by adding the exponents.
Tap for more steps...
Step 6.11.1
Multiply 3 by 3-2.
Tap for more steps...
Step 6.11.1.1
Raise 3 to the power of 1.
29+313-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.11.1.2
Use the power rule aman=am+n to combine exponents.
29+31-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
29+31-20.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.11.2
Subtract 2 from 1.
29+3-10.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
29+3-10.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.12
Rewrite the expression using the negative exponent rule b-n=1bn.
29+130.14÷193-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.13
To divide by a fraction, multiply by its reciprocal.
29+13(0.149)3-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.14
Multiply 0.14 by 9.
29+131.263-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.15
Combine 13 and 1.26.
29+1.2633-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.16
Divide 1.26 by 3.
29+0.423-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.17
To write 0.42 as a fraction with a common denominator, multiply by 99.
29+0.42993-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.18
Combine 0.42 and 99.
29+0.42993-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.19
Combine the numerators over the common denominator.
2+0.42993-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.20
Rewrite 2+0.4299 in a factored form.
Tap for more steps...
Step 6.20.1
Multiply 0.42 by 9.
2+3.7893-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.20.2
Add 2 and 3.78.
5.7893-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 6.20.3
Divide 5.78 by 9.
0.6423-24+33-2(-(7÷27+5(-32)4-24(532)-1))
0.6423-24+33-2(-(7÷27+5(-32)4-24(532)-1))
0.6423-24+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 7
Simplify the denominator.
Tap for more steps...
Step 7.1
Rewrite the expression using the negative exponent rule b-n=1bn.
0.6421324+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 7.2
Raise 3 to the power of 2.
0.642194+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 7.3
Combine 19 and 4.
0.64249+33-2(-(7÷27+5(-32)4-24(532)-1))
Step 7.4
Multiply 3 by 3-2 by adding the exponents.
Tap for more steps...
Step 7.4.1
Multiply 3 by 3-2.
Tap for more steps...
Step 7.4.1.1
Raise 3 to the power of 1.
0.64249+313-2(-(7÷27+5(-32)4-24(532)-1))
Step 7.4.1.2
Use the power rule aman=am+n to combine exponents.
0.64249+31-2(-(7÷27+5(-32)4-24(532)-1))
0.64249+31-2(-(7÷27+5(-32)4-24(532)-1))
Step 7.4.2
Subtract 2 from 1.
0.64249+3-1(-(7÷27+5(-32)4-24(532)-1))
0.64249+3-1(-(7÷27+5(-32)4-24(532)-1))
Step 7.5
Rewrite the expression using the negative exponent rule b-n=1bn.
0.64249+13(-(7÷27+5(-32)4-24(532)-1))
Step 7.6
Simplify each term.
Tap for more steps...
Step 7.6.1
Rewrite the division as a fraction.
0.64249+13(-(727+5(-32)4-24(532)-1))
Step 7.6.2
Multiply 727.
Tap for more steps...
Step 7.6.2.1
Combine 72 and 7.
0.64249+13(-(772+5(-32)4-24(532)-1))
Step 7.6.2.2
Multiply 7 by 7.
0.64249+13(-(492+5(-32)4-24(532)-1))
0.64249+13(-(492+5(-32)4-24(532)-1))
Step 7.6.3
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 7.6.3.1
Apply the product rule to -32.
0.64249+13(-(492+5(-1)4(32)4-24(532)-1))
Step 7.6.3.2
Apply the product rule to 32.
0.64249+13(-(492+5(-1)43424-24(532)-1))
0.64249+13(-(492+5(-1)43424-24(532)-1))
Step 7.6.4
Raise -1 to the power of 4.
0.64249+13(-(492+513424-24(532)-1))
Step 7.6.5
Multiply 3424 by 1.
0.64249+13(-(492+53424-24(532)-1))
Step 7.6.6
Raise 3 to the power of 4.
0.64249+13(-(492+58124-24(532)-1))
Step 7.6.7
Raise 2 to the power of 4.
0.64249+13(-(492+58116-24(532)-1))
Step 7.6.8
Raise 2 to the power of 4.
0.64249+13(-(492+58116-116(532)-1))
Step 7.6.9
Multiply -1 by 16.
0.64249+13(-(492+58116-16(532)-1))
Step 7.6.10
To write -16 as a fraction with a common denominator, multiply by 1616.
0.64249+13(-(492+58116-161616(532)-1))
Step 7.6.11
Combine -16 and 1616.
0.64249+13(-(492+58116+-161616(532)-1))
Step 7.6.12
Combine the numerators over the common denominator.
0.64249+13(-(492+581-161616(532)-1))
Step 7.6.13
Simplify the numerator.
Tap for more steps...
Step 7.6.13.1
Multiply -16 by 16.
0.64249+13(-(492+581-25616(532)-1))
Step 7.6.13.2
Subtract 256 from 81.
0.64249+13(-(492+5-17516(532)-1))
0.64249+13(-(492+5-17516(532)-1))
Step 7.6.14
Move the negative in front of the fraction.
0.64249+13(-(492+5-17516(532)-1))
Step 7.6.15
Rewrite -17516 as ((-1)5)517516.
Tap for more steps...
Step 7.6.15.1
Rewrite -1 as (-1)5.
0.64249+13(-(492+5(-1)517516(532)-1))
Step 7.6.15.2
Rewrite -1 as (-1)5.
0.64249+13(-(492+5((-1)5)517516(532)-1))
0.64249+13(-(492+5((-1)5)517516(532)-1))
Step 7.6.16
Pull terms out from under the radical.
0.64249+13(-(492+(-1)5517516(532)-1))
Step 7.6.17
Raise -1 to the power of 5.
0.64249+13(-(492-517516(532)-1))
Step 7.6.18
Rewrite 517516 as 5175516.
0.64249+13(-(492-5175516(532)-1))
Step 7.6.19
Multiply 5175516 by 51645164.
0.64249+13(-(492-(517551651645164)(532)-1))
Step 7.6.20
Combine and simplify the denominator.
Tap for more steps...
Step 7.6.20.1
Multiply 5175516 by 51645164.
0.64249+13(-(492-517551645165164(532)-1))
Step 7.6.20.2
Raise 516 to the power of 1.
0.64249+13(-(492-5175516451615164(532)-1))
Step 7.6.20.3
Use the power rule aman=am+n to combine exponents.
0.64249+13(-(492-517551645161+4(532)-1))
Step 7.6.20.4
Add 1 and 4.
0.64249+13(-(492-517551645165(532)-1))
Step 7.6.20.5
Rewrite 5165 as 16.
Tap for more steps...
Step 7.6.20.5.1
Use nax=axn to rewrite 516 as 1615.
0.64249+13(-(492-51755164(1615)5(532)-1))
Step 7.6.20.5.2
Apply the power rule and multiply exponents, (am)n=amn.
0.64249+13(-(492-5175516416155(532)-1))
Step 7.6.20.5.3
Combine 15 and 5.
0.64249+13(-(492-517551641655(532)-1))
Step 7.6.20.5.4
Cancel the common factor of 5.
Tap for more steps...
Step 7.6.20.5.4.1
Cancel the common factor.
0.64249+13(-(492-517551641655(532)-1))
Step 7.6.20.5.4.2
Rewrite the expression.
0.64249+13(-(492-51755164161(532)-1))
0.64249+13(-(492-51755164161(532)-1))
Step 7.6.20.5.5
Evaluate the exponent.
0.64249+13(-(492-5175516416(532)-1))
0.64249+13(-(492-5175516416(532)-1))
0.64249+13(-(492-5175516416(532)-1))
Step 7.6.21
Simplify the numerator.
Tap for more steps...
Step 7.6.21.1
Rewrite 5164 as 5164.
0.64249+13(-(492-5175516416(532)-1))
Step 7.6.21.2
Raise 16 to the power of 4.
0.64249+13(-(492-517556553616(532)-1))
Step 7.6.21.3
Rewrite 65536 as 852.
Tap for more steps...
Step 7.6.21.3.1
Factor 32768 out of 65536.
0.64249+13(-(492-5175532768(2)16(532)-1))
Step 7.6.21.3.2
Rewrite 32768 as 85.
0.64249+13(-(492-5175585216(532)-1))
0.64249+13(-(492-5175585216(532)-1))
Step 7.6.21.4
Pull terms out from under the radical.
0.64249+13(-(492-517585216(532)-1))
Step 7.6.21.5
Combine exponents.
Tap for more steps...
Step 7.6.21.5.1
Combine using the product rule for radicals.
0.64249+13(-(492-85175216(532)-1))
Step 7.6.21.5.2
Multiply 175 by 2.
0.64249+13(-(492-8535016(532)-1))
0.64249+13(-(492-8535016(532)-1))
0.64249+13(-(492-8535016(532)-1))
Step 7.6.22
Cancel the common factor of 8 and 16.
Tap for more steps...
Step 7.6.22.1
Factor 8 out of 85350.
0.64249+13(-(492-8(5350)16(532)-1))
Step 7.6.22.2
Cancel the common factors.
Tap for more steps...
Step 7.6.22.2.1
Factor 8 out of 16.
0.64249+13(-(492-8535082(532)-1))
Step 7.6.22.2.2
Cancel the common factor.
0.64249+13(-(492-8535082(532)-1))
Step 7.6.22.2.3
Rewrite the expression.
0.64249+13(-(492-53502(532)-1))
0.64249+13(-(492-53502(532)-1))
0.64249+13(-(492-53502(532)-1))
Step 7.6.23
Change the sign of the exponent by rewriting the base as its reciprocal.
0.64249+13(-(492-53502325))
Step 7.6.24
Cancel the common factor of 2.
Tap for more steps...
Step 7.6.24.1
Move the leading negative in -53502 into the numerator.
0.64249+13(-(492+-53502325))
Step 7.6.24.2
Factor 2 out of 32.
0.64249+13(-(492+-535022(16)5))
Step 7.6.24.3
Cancel the common factor.
0.64249+13(-(492+-535022165))
Step 7.6.24.4
Rewrite the expression.
0.64249+13(-(492-5350165))
0.64249+13(-(492-5350165))
Step 7.6.25
Combine 165 and 5350.
0.64249+13(-(492-1653505))
0.64249+13(-(492-1653505))
Step 7.7
To write 492 as a fraction with a common denominator, multiply by 55.
0.64249+13(-(49255-1653505))
Step 7.8
To write -1653505 as a fraction with a common denominator, multiply by 22.
0.64249+13(-(49255-165350522))
Step 7.9
Write each expression with a common denominator of 10, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 7.9.1
Multiply 492 by 55.
0.64249+13(-(49525-165350522))
Step 7.9.2
Multiply 2 by 5.
0.64249+13(-(49510-165350522))
Step 7.9.3
Multiply 1653505 by 22.
0.64249+13(-(49510-165350252))
Step 7.9.4
Multiply 5 by 2.
0.64249+13(-(49510-165350210))
0.64249+13(-(49510-165350210))
Step 7.10
Combine the numerators over the common denominator.
0.64249+13(-495-165350210)
Step 7.11
Simplify the numerator.
Tap for more steps...
Step 7.11.1
Multiply 49 by 5.
0.64249+13(-245-165350210)
Step 7.11.2
Multiply 2 by -16.
0.64249+13(-245-32535010)
0.64249+13(-245-32535010)
Step 7.12
Multiply 13(-245-32535010).
Tap for more steps...
Step 7.12.1
Multiply 13 by 245-32535010.
0.64249-245-325350310
Step 7.12.2
Multiply 3 by 10.
0.64249-245-32535030
0.64249-245-32535030
Step 7.13
To write 49 as a fraction with a common denominator, multiply by 1010.
0.642491010-245-32535030
Step 7.14
To write -245-32535030 as a fraction with a common denominator, multiply by 33.
0.642491010-245-3253503033
Step 7.15
Write each expression with a common denominator of 90, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 7.15.1
Multiply 49 by 1010.
0.642410910-245-3253503033
Step 7.15.2
Multiply 9 by 10.
0.64241090-245-3253503033
Step 7.15.3
Multiply 245-32535030 by 33.
0.64241090-(245-325350)3303
Step 7.15.4
Multiply 30 by 3.
0.64241090-(245-325350)390
0.64241090-(245-325350)390
Step 7.16
Combine the numerators over the common denominator.
0.642410-(245-325350)390
Step 7.17
Rewrite 410-(245-325350)390 in a factored form.
Tap for more steps...
Step 7.17.1
Multiply 4 by 10.
0.64240-(245-325350)390
Step 7.17.2
Apply the distributive property.
0.64240+(-1245-(-325350))390
Step 7.17.3
Multiply -1 by 245.
0.64240+(-245-(-325350))390
Step 7.17.4
Multiply -32 by -1.
0.64240+(-245+325350)390
Step 7.17.5
Apply the distributive property.
0.64240-2453+325350390
Step 7.17.6
Multiply -245 by 3.
0.64240-735+325350390
Step 7.17.7
Multiply 3 by 32.
0.64240-735+96535090
Step 7.17.8
Subtract 735 from 40.
0.642-695+96535090
0.642-695+96535090
0.642-695+96535090
Step 8
Multiply the numerator by the reciprocal of the denominator.
0.64290-695+965350
Step 9
Multiply 0.64290-695+965350.
Tap for more steps...
Step 9.1
Combine 0.642 and 90-695+965350.
0.64290-695+965350
Step 9.2
Multiply 0.642 by 90.
57.79-695+965350
57.79-695+965350
Step 10
Evaluate the root.
57.79-695+963.2271088
Step 11
Multiply 96 by 3.2271088.
57.79-695+309.80244568
Step 12
Add -695 and 309.80244568.
57.79-385.19755431
Step 13
Divide 57.79 by -385.19755431.
-0.15005287
 [x2  12  π  xdx ]