Enter a problem...
Basic Math Examples
z2-1z-2z+1z2−1z−2z+1
Step 1
Step 1.1
Rewrite 11 as 1212.
z2-12z-2z+1z2−12z−2z+1
Step 1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=za=z and b=1b=1.
(z+1)(z-1)z-2z+1(z+1)(z−1)z−2z+1
(z+1)(z-1)z-2z+1(z+1)(z−1)z−2z+1
Step 2
Step 2.1
Subtract 2z2z from zz.
(z+1)(z-1)-z+1(z+1)(z−1)−z+1
Step 2.2
Simplify terms.
Step 2.2.1
Cancel the common factor of z-1z−1 and -z+1−z+1.
Step 2.2.1.1
Factor -1−1 out of zz.
(z+1)(-1(-z)-1)-z+1(z+1)(−1(−z)−1)−z+1
Step 2.2.1.2
Rewrite -1−1 as -1(1)−1(1).
(z+1)(-1(-z)-1(1))-z+1(z+1)(−1(−z)−1(1))−z+1
Step 2.2.1.3
Factor -1−1 out of -1(-z)-1(1)−1(−z)−1(1).
(z+1)(-1(-z+1))-z+1(z+1)(−1(−z+1))−z+1
Step 2.2.1.4
Cancel the common factor.
(z+1)(-1(-z+1))-z+1
Step 2.2.1.5
Divide (z+1)⋅(-1) by 1.
(z+1)⋅(-1)
(z+1)⋅(-1)
Step 2.2.2
Apply the distributive property.
z⋅-1+1⋅-1
Step 2.2.3
Simplify the expression.
Step 2.2.3.1
Move -1 to the left of z.
-1⋅z+1⋅-1
Step 2.2.3.2
Multiply -1 by 1.
-1⋅z-1
-1⋅z-1
-1⋅z-1
Step 2.3
Rewrite -1z as -z.
-z-1
-z-1