Basic Math Examples

Simplify (z^2-1)/(z-2z+1)
z2-1z-2z+1z21z2z+1
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Rewrite 11 as 1212.
z2-12z-2z+1z212z2z+1
Step 1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=za=z and b=1b=1.
(z+1)(z-1)z-2z+1(z+1)(z1)z2z+1
(z+1)(z-1)z-2z+1(z+1)(z1)z2z+1
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Subtract 2z2z from zz.
(z+1)(z-1)-z+1(z+1)(z1)z+1
Step 2.2
Simplify terms.
Tap for more steps...
Step 2.2.1
Cancel the common factor of z-1z1 and -z+1z+1.
Tap for more steps...
Step 2.2.1.1
Factor -11 out of zz.
(z+1)(-1(-z)-1)-z+1(z+1)(1(z)1)z+1
Step 2.2.1.2
Rewrite -11 as -1(1)1(1).
(z+1)(-1(-z)-1(1))-z+1(z+1)(1(z)1(1))z+1
Step 2.2.1.3
Factor -11 out of -1(-z)-1(1)1(z)1(1).
(z+1)(-1(-z+1))-z+1(z+1)(1(z+1))z+1
Step 2.2.1.4
Cancel the common factor.
(z+1)(-1(-z+1))-z+1
Step 2.2.1.5
Divide (z+1)(-1) by 1.
(z+1)(-1)
(z+1)(-1)
Step 2.2.2
Apply the distributive property.
z-1+1-1
Step 2.2.3
Simplify the expression.
Tap for more steps...
Step 2.2.3.1
Move -1 to the left of z.
-1z+1-1
Step 2.2.3.2
Multiply -1 by 1.
-1z-1
-1z-1
-1z-1
Step 2.3
Rewrite -1z as -z.
-z-1
-z-1
 [x2  12  π  xdx ]