Enter a problem...
Basic Math Examples
13√3613√36
Step 1
Multiply 13√3613√36 by 3√3623√3623√3623√362.
13√36⋅3√3623√36213√36⋅3√3623√362
Step 2
Step 2.1
Multiply 13√3613√36 by 3√3623√3623√3623√362.
3√3623√363√3623√3623√363√362
Step 2.2
Raise 3√363√36 to the power of 11.
3√3623√3613√3623√3623√3613√362
Step 2.3
Use the power rule aman=am+naman=am+n to combine exponents.
3√3623√361+23√3623√361+2
Step 2.4
Add 11 and 22.
3√3623√3633√3623√363
Step 2.5
Rewrite 3√3633√363 as 3636.
Step 2.5.1
Use n√ax=axnn√ax=axn to rewrite 3√363√36 as 36133613.
3√362(3613)33√362(3613)3
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
3√3623613⋅33√3623613⋅3
Step 2.5.3
Combine 1313 and 33.
3√36236333√3623633
Step 2.5.4
Cancel the common factor of 33.
Step 2.5.4.1
Cancel the common factor.
3√36236333√3623633
Step 2.5.4.2
Rewrite the expression.
3√3623613√362361
3√3623613√362361
Step 2.5.5
Evaluate the exponent.
3√362363√36236
3√362363√36236
3√362363√36236
Step 3
Step 3.1
Rewrite 3√3623√362 as 3√3623√362.
3√362363√36236
Step 3.2
Raise 3636 to the power of 22.
3√1296363√129636
Step 3.3
Rewrite 12961296 as 63⋅663⋅6.
Step 3.3.1
Factor 216216 out of 12961296.
3√216(6)363√216(6)36
Step 3.3.2
Rewrite 216216 as 6363.
3√63⋅6363√63⋅636
3√63⋅6363√63⋅636
Step 3.4
Pull terms out from under the radical.
63√63663√636
63√63663√636
Step 4
Step 4.1
Factor 66 out of 63√663√6.
6(3√6)366(3√6)36
Step 4.2
Cancel the common factors.
Step 4.2.1
Factor 66 out of 3636.
63√66⋅663√66⋅6
Step 4.2.2
Cancel the common factor.
63√66⋅663√66⋅6
Step 4.2.3
Rewrite the expression.
3√663√66
3√663√66
3√663√66
Step 5
The result can be shown in multiple forms.
Exact Form:
3√663√66
Decimal Form:
0.30285343…0.30285343…