Enter a problem...
Basic Math Examples
12√2+112√2+1
Step 1
Multiply 12√2+112√2+1 by √2-1√2-1√2−1√2−1.
12√2+1⋅√2-1√2-112√2+1⋅√2−1√2−1
Step 2
Multiply 12√2+112√2+1 by √2-1√2-1√2−1√2−1.
12(√2-1)(√2+1)(√2-1)12(√2−1)(√2+1)(√2−1)
Step 3
Expand the denominator using the FOIL method.
12(√2-1)√22+√2⋅-1+√2-112(√2−1)√22+√2⋅−1+√2−1
Step 4
Simplify.
12(√2-1)112(√2−1)1
Step 5
Divide 12(√2-1)12(√2−1) by 11.
12(√2-1)12(√2−1)
Step 6
Apply the distributive property.
12√2+12⋅-112√2+12⋅−1
Step 7
Multiply 1212 by -1−1.
12√2-1212√2−12
Step 8
The result can be shown in multiple forms.
Exact Form:
12√2-1212√2−12
Decimal Form:
4.97056274…4.97056274…