Enter a problem...
Basic Math Examples
167√2167√2
Step 1
Multiply 167√2167√2 by √2√2√2√2.
167√2⋅√2√2167√2⋅√2√2
Step 2
Step 2.1
Multiply 167√2167√2 by √2√2√2√2.
16√27√2√216√27√2√2
Step 2.2
Move √2√2.
16√27(√2√2)16√27(√2√2)
Step 2.3
Raise √2√2 to the power of 11.
16√27(√21√2)16√27(√21√2)
Step 2.4
Raise √2√2 to the power of 11.
16√27(√21√21)16√27(√21√21)
Step 2.5
Use the power rule aman=am+naman=am+n to combine exponents.
16√27√21+116√27√21+1
Step 2.6
Add 11 and 11.
16√27√2216√27√22
Step 2.7
Rewrite √22√22 as 22.
Step 2.7.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
16√27(212)216√27(212)2
Step 2.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
16√27⋅212⋅216√27⋅212⋅2
Step 2.7.3
Combine 1212 and 22.
16√27⋅22216√27⋅222
Step 2.7.4
Cancel the common factor of 22.
Step 2.7.4.1
Cancel the common factor.
16√27⋅222
Step 2.7.4.2
Rewrite the expression.
16√27⋅21
16√27⋅21
Step 2.7.5
Evaluate the exponent.
16√27⋅2
16√27⋅2
16√27⋅2
Step 3
Step 3.1
Factor 2 out of 16√2.
2(8√2)7⋅2
Step 3.2
Cancel the common factors.
Step 3.2.1
Factor 2 out of 7⋅2.
2(8√2)2⋅7
Step 3.2.2
Cancel the common factor.
2(8√2)2⋅7
Step 3.2.3
Rewrite the expression.
8√27
8√27
8√27
Step 4
The result can be shown in multiple forms.
Exact Form:
8√27
Decimal Form:
1.61624407…