Enter a problem...
Basic Math Examples
(a+b)3+(a-b)3a(a2+3b2)
Step 1
Step 1.1
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2) where a=a+b and b=a-b.
(a+b+a-b)((a+b)2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2
Simplify.
Step 1.2.1
Add a and a.
(2a+b-b)((a+b)2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.2
Subtract b from b.
(2a+0)((a+b)2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.3
Add 2a and 0.
2a((a+b)2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.4
Rewrite (a+b)2 as (a+b)(a+b).
2a((a+b)(a+b)-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.5
Expand (a+b)(a+b) using the FOIL Method.
Step 1.2.5.1
Apply the distributive property.
2a(a(a+b)+b(a+b)-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.5.2
Apply the distributive property.
2a(a⋅a+ab+b(a+b)-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.5.3
Apply the distributive property.
2a(a⋅a+ab+ba+b⋅b-(a+b)(a-b)+(a-b)2)a(a2+3b2)
2a(a⋅a+ab+ba+b⋅b-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.6
Simplify and combine like terms.
Step 1.2.6.1
Simplify each term.
Step 1.2.6.1.1
Multiply a by a.
2a(a2+ab+ba+b⋅b-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.6.1.2
Multiply b by b.
2a(a2+ab+ba+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
2a(a2+ab+ba+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.6.2
Add ab and ba.
Step 1.2.6.2.1
Reorder b and a.
2a(a2+ab+ab+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.6.2.2
Add ab and ab.
2a(a2+2ab+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.7
Apply the distributive property.
2a(a2+2ab+b2+(-a-b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.8
Expand (-a-b)(a-b) using the FOIL Method.
Step 1.2.8.1
Apply the distributive property.
2a(a2+2ab+b2-a(a-b)-b(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.8.2
Apply the distributive property.
2a(a2+2ab+b2-a⋅a-a(-b)-b(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.8.3
Apply the distributive property.
2a(a2+2ab+b2-a⋅a-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a⋅a-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9
Simplify and combine like terms.
Step 1.2.9.1
Simplify each term.
Step 1.2.9.1.1
Multiply a by a by adding the exponents.
Step 1.2.9.1.1.1
Move a.
2a(a2+2ab+b2-(a⋅a)-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.1.2
Multiply a by a.
2a(a2+2ab+b2-a2-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.2
Rewrite using the commutative property of multiplication.
2a(a2+2ab+b2-a2-1⋅-1ab-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.3
Multiply -1 by -1.
2a(a2+2ab+b2-a2+1ab-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.4
Multiply a by 1.
2a(a2+2ab+b2-a2+ab-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.5
Rewrite using the commutative property of multiplication.
2a(a2+2ab+b2-a2+ab-ba-1⋅-1b⋅b+(a-b)2)a(a2+3b2)
Step 1.2.9.1.6
Multiply b by b by adding the exponents.
Step 1.2.9.1.6.1
Move b.
2a(a2+2ab+b2-a2+ab-ba-1⋅-1(b⋅b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.6.2
Multiply b by b.
2a(a2+2ab+b2-a2+ab-ba-1⋅-1b2+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2+ab-ba-1⋅-1b2+(a-b)2)a(a2+3b2)
Step 1.2.9.1.7
Multiply -1 by -1.
2a(a2+2ab+b2-a2+ab-ba+1b2+(a-b)2)a(a2+3b2)
Step 1.2.9.1.8
Multiply b2 by 1.
2a(a2+2ab+b2-a2+ab-ba+b2+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2+ab-ba+b2+(a-b)2)a(a2+3b2)
Step 1.2.9.2
Subtract ba from ab.
Step 1.2.9.2.1
Move b.
2a(a2+2ab+b2-a2+ab-1ab+b2+(a-b)2)a(a2+3b2)
Step 1.2.9.2.2
Subtract ab from ab.
2a(a2+2ab+b2-a2+0+b2+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2+0+b2+(a-b)2)a(a2+3b2)
Step 1.2.9.3
Add -a2 and 0.
2a(a2+2ab+b2-a2+b2+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+(a-b)2)a(a2+3b2)
Step 1.2.10
Rewrite (a-b)2 as (a-b)(a-b).
2a(a2+2ab+b2-a2+b2+(a-b)(a-b))a(a2+3b2)
Step 1.2.11
Expand (a-b)(a-b) using the FOIL Method.
Step 1.2.11.1
Apply the distributive property.
2a(a2+2ab+b2-a2+b2+a(a-b)-b(a-b))a(a2+3b2)
Step 1.2.11.2
Apply the distributive property.
2a(a2+2ab+b2-a2+b2+a⋅a+a(-b)-b(a-b))a(a2+3b2)
Step 1.2.11.3
Apply the distributive property.
2a(a2+2ab+b2-a2+b2+a⋅a+a(-b)-ba-b(-b))a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a⋅a+a(-b)-ba-b(-b))a(a2+3b2)
Step 1.2.12
Simplify and combine like terms.
Step 1.2.12.1
Simplify each term.
Step 1.2.12.1.1
Multiply a by a.
2a(a2+2ab+b2-a2+b2+a2+a(-b)-ba-b(-b))a(a2+3b2)
Step 1.2.12.1.2
Rewrite using the commutative property of multiplication.
2a(a2+2ab+b2-a2+b2+a2-ab-ba-b(-b))a(a2+3b2)
Step 1.2.12.1.3
Rewrite using the commutative property of multiplication.
2a(a2+2ab+b2-a2+b2+a2-ab-ba-1⋅-1b⋅b)a(a2+3b2)
Step 1.2.12.1.4
Multiply b by b by adding the exponents.
Step 1.2.12.1.4.1
Move b.
2a(a2+2ab+b2-a2+b2+a2-ab-ba-1⋅-1(b⋅b))a(a2+3b2)
Step 1.2.12.1.4.2
Multiply b by b.
2a(a2+2ab+b2-a2+b2+a2-ab-ba-1⋅-1b2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a2-ab-ba-1⋅-1b2)a(a2+3b2)
Step 1.2.12.1.5
Multiply -1 by -1.
2a(a2+2ab+b2-a2+b2+a2-ab-ba+1b2)a(a2+3b2)
Step 1.2.12.1.6
Multiply b2 by 1.
2a(a2+2ab+b2-a2+b2+a2-ab-ba+b2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a2-ab-ba+b2)a(a2+3b2)
Step 1.2.12.2
Subtract ba from -ab.
Step 1.2.12.2.1
Move b.
2a(a2+2ab+b2-a2+b2+a2-ab-1ab+b2)a(a2+3b2)
Step 1.2.12.2.2
Subtract ab from -ab.
2a(a2+2ab+b2-a2+b2+a2-2ab+b2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a2-2ab+b2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a2-2ab+b2)a(a2+3b2)
Step 1.2.13
Subtract a2 from a2.
2a(2ab+b2+0+b2+a2-2ab+b2)a(a2+3b2)
Step 1.2.14
Add 2ab and 0.
2a(b2+2ab+b2+a2-2ab+b2)a(a2+3b2)
Step 1.2.15
Add b2 and b2.
2a(2b2+2ab+a2-2ab+b2)a(a2+3b2)
Step 1.2.16
Add 2b2 and b2.
2a(3b2+2ab+a2-2ab)a(a2+3b2)
Step 1.2.17
Subtract 2ab from 2ab.
2a(3b2+a2+0)a(a2+3b2)
Step 1.2.18
Add 3b2+a2 and 0.
2a(3b2+a2)a(a2+3b2)
2a(3b2+a2)a(a2+3b2)
2a(3b2+a2)a(a2+3b2)
Step 2
Step 2.1
Cancel the common factor of a.
Step 2.1.1
Cancel the common factor.
2a(3b2+a2)a(a2+3b2)
Step 2.1.2
Rewrite the expression.
2(3b2+a2)a2+3b2
2(3b2+a2)a2+3b2
Step 2.2
Cancel the common factor of 3b2+a2 and a2+3b2.
Step 2.2.1
Reorder terms.
2(a2+3b2)a2+3b2
Step 2.2.2
Cancel the common factor.
2(a2+3b2)a2+3b2
Step 2.2.3
Divide 2 by 1.
2
2
2