Basic Math Examples

Simplify ((a+b)^3+(a-b)^3)/(a(a^2+3b^2))
(a+b)3+(a-b)3a(a2+3b2)
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2) where a=a+b and b=a-b.
(a+b+a-b)((a+b)2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Add a and a.
(2a+b-b)((a+b)2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.2
Subtract b from b.
(2a+0)((a+b)2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.3
Add 2a and 0.
2a((a+b)2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.4
Rewrite (a+b)2 as (a+b)(a+b).
2a((a+b)(a+b)-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.5
Expand (a+b)(a+b) using the FOIL Method.
Tap for more steps...
Step 1.2.5.1
Apply the distributive property.
2a(a(a+b)+b(a+b)-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.5.2
Apply the distributive property.
2a(aa+ab+b(a+b)-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.5.3
Apply the distributive property.
2a(aa+ab+ba+bb-(a+b)(a-b)+(a-b)2)a(a2+3b2)
2a(aa+ab+ba+bb-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.6
Simplify and combine like terms.
Tap for more steps...
Step 1.2.6.1
Simplify each term.
Tap for more steps...
Step 1.2.6.1.1
Multiply a by a.
2a(a2+ab+ba+bb-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.6.1.2
Multiply b by b.
2a(a2+ab+ba+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
2a(a2+ab+ba+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.6.2
Add ab and ba.
Tap for more steps...
Step 1.2.6.2.1
Reorder b and a.
2a(a2+ab+ab+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.6.2.2
Add ab and ab.
2a(a2+2ab+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-(a+b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.7
Apply the distributive property.
2a(a2+2ab+b2+(-a-b)(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.8
Expand (-a-b)(a-b) using the FOIL Method.
Tap for more steps...
Step 1.2.8.1
Apply the distributive property.
2a(a2+2ab+b2-a(a-b)-b(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.8.2
Apply the distributive property.
2a(a2+2ab+b2-aa-a(-b)-b(a-b)+(a-b)2)a(a2+3b2)
Step 1.2.8.3
Apply the distributive property.
2a(a2+2ab+b2-aa-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-aa-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9
Simplify and combine like terms.
Tap for more steps...
Step 1.2.9.1
Simplify each term.
Tap for more steps...
Step 1.2.9.1.1
Multiply a by a by adding the exponents.
Tap for more steps...
Step 1.2.9.1.1.1
Move a.
2a(a2+2ab+b2-(aa)-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.1.2
Multiply a by a.
2a(a2+2ab+b2-a2-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2-a(-b)-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.2
Rewrite using the commutative property of multiplication.
2a(a2+2ab+b2-a2-1-1ab-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.3
Multiply -1 by -1.
2a(a2+2ab+b2-a2+1ab-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.4
Multiply a by 1.
2a(a2+2ab+b2-a2+ab-ba-b(-b)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.5
Rewrite using the commutative property of multiplication.
2a(a2+2ab+b2-a2+ab-ba-1-1bb+(a-b)2)a(a2+3b2)
Step 1.2.9.1.6
Multiply b by b by adding the exponents.
Tap for more steps...
Step 1.2.9.1.6.1
Move b.
2a(a2+2ab+b2-a2+ab-ba-1-1(bb)+(a-b)2)a(a2+3b2)
Step 1.2.9.1.6.2
Multiply b by b.
2a(a2+2ab+b2-a2+ab-ba-1-1b2+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2+ab-ba-1-1b2+(a-b)2)a(a2+3b2)
Step 1.2.9.1.7
Multiply -1 by -1.
2a(a2+2ab+b2-a2+ab-ba+1b2+(a-b)2)a(a2+3b2)
Step 1.2.9.1.8
Multiply b2 by 1.
2a(a2+2ab+b2-a2+ab-ba+b2+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2+ab-ba+b2+(a-b)2)a(a2+3b2)
Step 1.2.9.2
Subtract ba from ab.
Tap for more steps...
Step 1.2.9.2.1
Move b.
2a(a2+2ab+b2-a2+ab-1ab+b2+(a-b)2)a(a2+3b2)
Step 1.2.9.2.2
Subtract ab from ab.
2a(a2+2ab+b2-a2+0+b2+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2+0+b2+(a-b)2)a(a2+3b2)
Step 1.2.9.3
Add -a2 and 0.
2a(a2+2ab+b2-a2+b2+(a-b)2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+(a-b)2)a(a2+3b2)
Step 1.2.10
Rewrite (a-b)2 as (a-b)(a-b).
2a(a2+2ab+b2-a2+b2+(a-b)(a-b))a(a2+3b2)
Step 1.2.11
Expand (a-b)(a-b) using the FOIL Method.
Tap for more steps...
Step 1.2.11.1
Apply the distributive property.
2a(a2+2ab+b2-a2+b2+a(a-b)-b(a-b))a(a2+3b2)
Step 1.2.11.2
Apply the distributive property.
2a(a2+2ab+b2-a2+b2+aa+a(-b)-b(a-b))a(a2+3b2)
Step 1.2.11.3
Apply the distributive property.
2a(a2+2ab+b2-a2+b2+aa+a(-b)-ba-b(-b))a(a2+3b2)
2a(a2+2ab+b2-a2+b2+aa+a(-b)-ba-b(-b))a(a2+3b2)
Step 1.2.12
Simplify and combine like terms.
Tap for more steps...
Step 1.2.12.1
Simplify each term.
Tap for more steps...
Step 1.2.12.1.1
Multiply a by a.
2a(a2+2ab+b2-a2+b2+a2+a(-b)-ba-b(-b))a(a2+3b2)
Step 1.2.12.1.2
Rewrite using the commutative property of multiplication.
2a(a2+2ab+b2-a2+b2+a2-ab-ba-b(-b))a(a2+3b2)
Step 1.2.12.1.3
Rewrite using the commutative property of multiplication.
2a(a2+2ab+b2-a2+b2+a2-ab-ba-1-1bb)a(a2+3b2)
Step 1.2.12.1.4
Multiply b by b by adding the exponents.
Tap for more steps...
Step 1.2.12.1.4.1
Move b.
2a(a2+2ab+b2-a2+b2+a2-ab-ba-1-1(bb))a(a2+3b2)
Step 1.2.12.1.4.2
Multiply b by b.
2a(a2+2ab+b2-a2+b2+a2-ab-ba-1-1b2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a2-ab-ba-1-1b2)a(a2+3b2)
Step 1.2.12.1.5
Multiply -1 by -1.
2a(a2+2ab+b2-a2+b2+a2-ab-ba+1b2)a(a2+3b2)
Step 1.2.12.1.6
Multiply b2 by 1.
2a(a2+2ab+b2-a2+b2+a2-ab-ba+b2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a2-ab-ba+b2)a(a2+3b2)
Step 1.2.12.2
Subtract ba from -ab.
Tap for more steps...
Step 1.2.12.2.1
Move b.
2a(a2+2ab+b2-a2+b2+a2-ab-1ab+b2)a(a2+3b2)
Step 1.2.12.2.2
Subtract ab from -ab.
2a(a2+2ab+b2-a2+b2+a2-2ab+b2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a2-2ab+b2)a(a2+3b2)
2a(a2+2ab+b2-a2+b2+a2-2ab+b2)a(a2+3b2)
Step 1.2.13
Subtract a2 from a2.
2a(2ab+b2+0+b2+a2-2ab+b2)a(a2+3b2)
Step 1.2.14
Add 2ab and 0.
2a(b2+2ab+b2+a2-2ab+b2)a(a2+3b2)
Step 1.2.15
Add b2 and b2.
2a(2b2+2ab+a2-2ab+b2)a(a2+3b2)
Step 1.2.16
Add 2b2 and b2.
2a(3b2+2ab+a2-2ab)a(a2+3b2)
Step 1.2.17
Subtract 2ab from 2ab.
2a(3b2+a2+0)a(a2+3b2)
Step 1.2.18
Add 3b2+a2 and 0.
2a(3b2+a2)a(a2+3b2)
2a(3b2+a2)a(a2+3b2)
2a(3b2+a2)a(a2+3b2)
Step 2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.1
Cancel the common factor of a.
Tap for more steps...
Step 2.1.1
Cancel the common factor.
2a(3b2+a2)a(a2+3b2)
Step 2.1.2
Rewrite the expression.
2(3b2+a2)a2+3b2
2(3b2+a2)a2+3b2
Step 2.2
Cancel the common factor of 3b2+a2 and a2+3b2.
Tap for more steps...
Step 2.2.1
Reorder terms.
2(a2+3b2)a2+3b2
Step 2.2.2
Cancel the common factor.
2(a2+3b2)a2+3b2
Step 2.2.3
Divide 2 by 1.
2
2
2
 [x2  12  π  xdx ]