Basic Math Examples

Simplify (( square root of b)/(3ab))/(1/(a^2)+1/(ab^2))
b3ab1a2+1ab2b3ab1a2+1ab2
Step 1
Multiply the numerator by the reciprocal of the denominator.
b3ab11a2+1ab2b3ab11a2+1ab2
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
To write 1a21a2 as a fraction with a common denominator, multiply by b2b2b2b2.
b3ab11a2b2b2+1ab2b3ab11a2b2b2+1ab2
Step 2.2
To write 1ab21ab2 as a fraction with a common denominator, multiply by aaaa.
b3ab11a2b2b2+1ab2aab3ab11a2b2b2+1ab2aa
Step 2.3
Write each expression with a common denominator of a2b2a2b2, by multiplying each by an appropriate factor of 11.
Tap for more steps...
Step 2.3.1
Multiply 1a21a2 by b2b2b2b2.
b3ab1b2a2b2+1ab2aab3ab1b2a2b2+1ab2aa
Step 2.3.2
Multiply 1ab21ab2 by aaaa.
b3ab1b2a2b2+aab2ab3ab1b2a2b2+aab2a
Step 2.3.3
Raise aa to the power of 11.
b3ab1b2a2b2+aa1ab2b3ab1b2a2b2+aa1ab2
Step 2.3.4
Raise aa to the power of 11.
b3ab1b2a2b2+aa1a1b2b3ab1b2a2b2+aa1a1b2
Step 2.3.5
Use the power rule aman=am+naman=am+n to combine exponents.
b3ab1b2a2b2+aa1+1b2
Step 2.3.6
Add 1 and 1.
b3ab1b2a2b2+aa2b2
b3ab1b2a2b2+aa2b2
Step 2.4
Combine the numerators over the common denominator.
b3ab1b2+aa2b2
b3ab1b2+aa2b2
Step 3
Combine fractions.
Tap for more steps...
Step 3.1
Combine.
b13abb2+aa2b2
Step 3.2
Multiply b by 1.
b3abb2+aa2b2
b3abb2+aa2b2
Step 4
Simplify the denominator.
Tap for more steps...
Step 4.1
Combine 3 and b2+aa2b2.
bab3(b2+a)a2b2
Step 4.2
Combine a and 3(b2+a)a2b2.
bba(3(b2+a))a2b2
Step 4.3
Combine b and a(3(b2+a))a2b2.
bb(a(3(b2+a)))a2b2
bb(a(3(b2+a)))a2b2
Step 5
Remove unnecessary parentheses.
bba3(b2+a)a2b2
Step 6
Simplify the denominator.
Tap for more steps...
Step 6.1
Reduce the expression ba3(b2+a)a2b2 by cancelling the common factors.
Tap for more steps...
Step 6.1.1
Factor b out of ba3(b2+a).
bb(a3(b2+a))a2b2
Step 6.1.2
Factor b out of a2b2.
bb(a3(b2+a))b(a2b)
Step 6.1.3
Cancel the common factor.
bb(a3(b2+a))b(a2b)
Step 6.1.4
Rewrite the expression.
ba3(b2+a)a2b
ba3(b2+a)a2b
Step 6.2
Cancel the common factor of a and a2.
Tap for more steps...
Step 6.2.1
Factor a out of a3(b2+a).
ba(3(b2+a))a2b
Step 6.2.2
Cancel the common factors.
Tap for more steps...
Step 6.2.2.1
Factor a out of a2b.
ba(3(b2+a))a(ab)
Step 6.2.2.2
Cancel the common factor.
ba(3(b2+a))a(ab)
Step 6.2.2.3
Rewrite the expression.
b3(b2+a)ab
b3(b2+a)ab
b3(b2+a)ab
b3(b2+a)ab
Step 7
Multiply the numerator by the reciprocal of the denominator.
bab3(b2+a)
Step 8
Combine b and ab3(b2+a).
bab3(b2+a)
 [x2  12  π  xdx ]