Enter a problem...
Basic Math Examples
√b3ab1a2+1ab2√b3ab1a2+1ab2
Step 1
Multiply the numerator by the reciprocal of the denominator.
√b3ab⋅11a2+1ab2√b3ab⋅11a2+1ab2
Step 2
Step 2.1
To write 1a21a2 as a fraction with a common denominator, multiply by b2b2b2b2.
√b3ab⋅11a2⋅b2b2+1ab2√b3ab⋅11a2⋅b2b2+1ab2
Step 2.2
To write 1ab21ab2 as a fraction with a common denominator, multiply by aaaa.
√b3ab⋅11a2⋅b2b2+1ab2⋅aa√b3ab⋅11a2⋅b2b2+1ab2⋅aa
Step 2.3
Write each expression with a common denominator of a2b2a2b2, by multiplying each by an appropriate factor of 11.
Step 2.3.1
Multiply 1a21a2 by b2b2b2b2.
√b3ab⋅1b2a2b2+1ab2⋅aa√b3ab⋅1b2a2b2+1ab2⋅aa
Step 2.3.2
Multiply 1ab21ab2 by aaaa.
√b3ab⋅1b2a2b2+aab2a√b3ab⋅1b2a2b2+aab2a
Step 2.3.3
Raise aa to the power of 11.
√b3ab⋅1b2a2b2+aa1ab2√b3ab⋅1b2a2b2+aa1ab2
Step 2.3.4
Raise aa to the power of 11.
√b3ab⋅1b2a2b2+aa1a1b2√b3ab⋅1b2a2b2+aa1a1b2
Step 2.3.5
Use the power rule aman=am+naman=am+n to combine exponents.
√b3ab⋅1b2a2b2+aa1+1b2
Step 2.3.6
Add 1 and 1.
√b3ab⋅1b2a2b2+aa2b2
√b3ab⋅1b2a2b2+aa2b2
Step 2.4
Combine the numerators over the common denominator.
√b3ab⋅1b2+aa2b2
√b3ab⋅1b2+aa2b2
Step 3
Step 3.1
Combine.
√b⋅13abb2+aa2b2
Step 3.2
Multiply √b by 1.
√b3abb2+aa2b2
√b3abb2+aa2b2
Step 4
Step 4.1
Combine 3 and b2+aa2b2.
√bab3(b2+a)a2b2
Step 4.2
Combine a and 3(b2+a)a2b2.
√bba(3(b2+a))a2b2
Step 4.3
Combine b and a(3(b2+a))a2b2.
√bb(a(3(b2+a)))a2b2
√bb(a(3(b2+a)))a2b2
Step 5
Remove unnecessary parentheses.
√bba⋅3(b2+a)a2b2
Step 6
Step 6.1
Reduce the expression ba⋅3(b2+a)a2b2 by cancelling the common factors.
Step 6.1.1
Factor b out of ba⋅3(b2+a).
√bb(a⋅3(b2+a))a2b2
Step 6.1.2
Factor b out of a2b2.
√bb(a⋅3(b2+a))b(a2b)
Step 6.1.3
Cancel the common factor.
√bb(a⋅3(b2+a))b(a2b)
Step 6.1.4
Rewrite the expression.
√ba⋅3(b2+a)a2b
√ba⋅3(b2+a)a2b
Step 6.2
Cancel the common factor of a and a2.
Step 6.2.1
Factor a out of a⋅3(b2+a).
√ba(3(b2+a))a2b
Step 6.2.2
Cancel the common factors.
Step 6.2.2.1
Factor a out of a2b.
√ba(3(b2+a))a(ab)
Step 6.2.2.2
Cancel the common factor.
√ba(3(b2+a))a(ab)
Step 6.2.2.3
Rewrite the expression.
√b3(b2+a)ab
√b3(b2+a)ab
√b3(b2+a)ab
√b3(b2+a)ab
Step 7
Multiply the numerator by the reciprocal of the denominator.
√bab3(b2+a)
Step 8
Combine √b and ab3(b2+a).
√bab3(b2+a)