Basic Math Examples

Factor (a^5-3a^4+a^3+2a-1)÷(a+3)
(a5-3a4+a3+2a-1)÷(a+3)(a53a4+a3+2a1)÷(a+3)
Step 1
Regroup terms.
(a5-1-3a4+a3+2a)÷(a+3)
Step 2
Factor a5-1 using the rational roots test.
Tap for more steps...
Step 2.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1
q=±1
Step 2.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1
Step 2.3
Substitute 1 and simplify the expression. In this case, the expression is equal to 0 so 1 is a root of the polynomial.
Tap for more steps...
Step 2.3.1
Substitute 1 into the polynomial.
15-1
Step 2.3.2
Raise 1 to the power of 5.
1-1
Step 2.3.3
Subtract 1 from 1.
0
0
Step 2.4
Since 1 is a known root, divide the polynomial by a-1 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
a5-1a-1
Step 2.5
Divide a5-1 by a-1.
Tap for more steps...
Step 2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
a-1a5+0a4+0a3+0a2+0a-1
Step 2.5.2
Divide the highest order term in the dividend a5 by the highest order term in divisor a.
a4
a-1a5+0a4+0a3+0a2+0a-1
Step 2.5.3
Multiply the new quotient term by the divisor.
a4
a-1a5+0a4+0a3+0a2+0a-1
+a5-a4
Step 2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in a5-a4
a4
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
Step 2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
a4
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4
Step 2.5.6
Pull the next terms from the original dividend down into the current dividend.
a4
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
Step 2.5.7
Divide the highest order term in the dividend a4 by the highest order term in divisor a.
a4+a3
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
Step 2.5.8
Multiply the new quotient term by the divisor.
a4+a3
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
+a4-a3
Step 2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in a4-a3
a4+a3
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
Step 2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
a4+a3
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3
Step 2.5.11
Pull the next terms from the original dividend down into the current dividend.
a4+a3
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
Step 2.5.12
Divide the highest order term in the dividend a3 by the highest order term in divisor a.
a4+a3+a2
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
Step 2.5.13
Multiply the new quotient term by the divisor.
a4+a3+a2
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
+a3-a2
Step 2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in a3-a2
a4+a3+a2
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
Step 2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
a4+a3+a2
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2
Step 2.5.16
Pull the next terms from the original dividend down into the current dividend.
a4+a3+a2
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
Step 2.5.17
Divide the highest order term in the dividend a2 by the highest order term in divisor a.
a4+a3+a2+a
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
Step 2.5.18
Multiply the new quotient term by the divisor.
a4+a3+a2+a
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
+a2-a
Step 2.5.19
The expression needs to be subtracted from the dividend, so change all the signs in a2-a
a4+a3+a2+a
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
-a2+a
Step 2.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
a4+a3+a2+a
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
-a2+a
+a
Step 2.5.21
Pull the next terms from the original dividend down into the current dividend.
a4+a3+a2+a
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
-a2+a
+a-1
Step 2.5.22
Divide the highest order term in the dividend a by the highest order term in divisor a.
a4+a3+a2+a+1
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
-a2+a
+a-1
Step 2.5.23
Multiply the new quotient term by the divisor.
a4+a3+a2+a+1
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
-a2+a
+a-1
+a-1
Step 2.5.24
The expression needs to be subtracted from the dividend, so change all the signs in a-1
a4+a3+a2+a+1
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
-a2+a
+a-1
-a+1
Step 2.5.25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
a4+a3+a2+a+1
a-1a5+0a4+0a3+0a2+0a-1
-a5+a4
+a4+0a3
-a4+a3
+a3+0a2
-a3+a2
+a2+0a
-a2+a
+a-1
-a+1
0
Step 2.5.26
Since the remander is 0, the final answer is the quotient.
a4+a3+a2+a+1
a4+a3+a2+a+1
Step 2.6
Write a5-1 as a set of factors.
((a-1)(a4+a3+a2+a+1)-3a4+a3+2a)÷(a+3)
((a-1)(a4+a3+a2+a+1)-3a4+a3+2a)÷(a+3)
Step 3
Factor a out of -3a4+a3+2a.
Tap for more steps...
Step 3.1
Factor a out of -3a4.
((a-1)(a4+a3+a2+a+1)+a(-3a3)+a3+2a)÷(a+3)
Step 3.2
Factor a out of a3.
((a-1)(a4+a3+a2+a+1)+a(-3a3)+aa2+2a)÷(a+3)
Step 3.3
Factor a out of 2a.
((a-1)(a4+a3+a2+a+1)+a(-3a3)+aa2+a2)÷(a+3)
Step 3.4
Factor a out of a(-3a3)+aa2.
((a-1)(a4+a3+a2+a+1)+a(-3a3+a2)+a2)÷(a+3)
Step 3.5
Factor a out of a(-3a3+a2)+a2.
((a-1)(a4+a3+a2+a+1)+a(-3a3+a2+2))÷(a+3)
((a-1)(a4+a3+a2+a+1)+a(-3a3+a2+2))÷(a+3)
Step 4
Factor.
Tap for more steps...
Step 4.1
Factor -3a3+a2+2 using the rational roots test.
Tap for more steps...
Step 4.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1,±2
q=±1,±3
Step 4.1.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±0.3,±2,±0.6
Step 4.1.3
Substitute 1 and simplify the expression. In this case, the expression is equal to 0 so 1 is a root of the polynomial.
Tap for more steps...
Step 4.1.3.1
Substitute 1 into the polynomial.
-313+12+2
Step 4.1.3.2
Raise 1 to the power of 3.
-31+12+2
Step 4.1.3.3
Multiply -3 by 1.
-3+12+2
Step 4.1.3.4
Raise 1 to the power of 2.
-3+1+2
Step 4.1.3.5
Add -3 and 1.
-2+2
Step 4.1.3.6
Add -2 and 2.
0
0
Step 4.1.4
Since 1 is a known root, divide the polynomial by a-1 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
-3a3+a2+2a-1
Step 4.1.5
Divide -3a3+a2+2 by a-1.
Tap for more steps...
Step 4.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
a-1-3a3+a2+0a+2
Step 4.1.5.2
Divide the highest order term in the dividend -3a3 by the highest order term in divisor a.
-3a2
a-1-3a3+a2+0a+2
Step 4.1.5.3
Multiply the new quotient term by the divisor.
-3a2
a-1-3a3+a2+0a+2
-3a3+3a2
Step 4.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in -3a3+3a2
-3a2
a-1-3a3+a2+0a+2
+3a3-3a2
Step 4.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-3a2
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2
Step 4.1.5.6
Pull the next terms from the original dividend down into the current dividend.
-3a2
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
Step 4.1.5.7
Divide the highest order term in the dividend -2a2 by the highest order term in divisor a.
-3a2-2a
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
Step 4.1.5.8
Multiply the new quotient term by the divisor.
-3a2-2a
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
-2a2+2a
Step 4.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in -2a2+2a
-3a2-2a
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
+2a2-2a
Step 4.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-3a2-2a
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
+2a2-2a
-2a
Step 4.1.5.11
Pull the next terms from the original dividend down into the current dividend.
-3a2-2a
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
+2a2-2a
-2a+2
Step 4.1.5.12
Divide the highest order term in the dividend -2a by the highest order term in divisor a.
-3a2-2a-2
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
+2a2-2a
-2a+2
Step 4.1.5.13
Multiply the new quotient term by the divisor.
-3a2-2a-2
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
+2a2-2a
-2a+2
-2a+2
Step 4.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in -2a+2
-3a2-2a-2
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
+2a2-2a
-2a+2
+2a-2
Step 4.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-3a2-2a-2
a-1-3a3+a2+0a+2
+3a3-3a2
-2a2+0a
+2a2-2a
-2a+2
+2a-2
0
Step 4.1.5.16
Since the remander is 0, the final answer is the quotient.
-3a2-2a-2
-3a2-2a-2
Step 4.1.6
Write -3a3+a2+2 as a set of factors.
((a-1)(a4+a3+a2+a+1)+a((a-1)(-3a2-2a-2)))÷(a+3)
((a-1)(a4+a3+a2+a+1)+a((a-1)(-3a2-2a-2)))÷(a+3)
Step 4.2
Remove unnecessary parentheses.
((a-1)(a4+a3+a2+a+1)+a(a-1)(-3a2-2a-2))÷(a+3)
((a-1)(a4+a3+a2+a+1)+a(a-1)(-3a2-2a-2))÷(a+3)
Step 5
Factor a-1 out of (a-1)(a4+a3+a2+a+1)+a(a-1)(-3a2-2a-2).
Tap for more steps...
Step 5.1
Factor a-1 out of a(a-1)(-3a2-2a-2).
((a-1)(a4+a3+a2+a+1)+(a-1)(a(-3a2-2a-2)))÷(a+3)
Step 5.2
Factor a-1 out of (a-1)(a4+a3+a2+a+1)+(a-1)(a(-3a2-2a-2)).
(a-1)(a4+a3+a2+a+1+a(-3a2-2a-2))÷(a+3)
(a-1)(a4+a3+a2+a+1+a(-3a2-2a-2))÷(a+3)
Step 6
Apply the distributive property.
(a-1)(a4+a3+a2+a+1+a(-3a2)+a(-2a)+a-2)÷(a+3)
Step 7
Simplify.
Tap for more steps...
Step 7.1
Rewrite using the commutative property of multiplication.
(a-1)(a4+a3+a2+a+1-3aa2+a(-2a)+a-2)÷(a+3)
Step 7.2
Rewrite using the commutative property of multiplication.
(a-1)(a4+a3+a2+a+1-3aa2-2aa+a-2)÷(a+3)
Step 7.3
Move -2 to the left of a.
(a-1)(a4+a3+a2+a+1-3aa2-2aa-2a)÷(a+3)
(a-1)(a4+a3+a2+a+1-3aa2-2aa-2a)÷(a+3)
Step 8
Simplify each term.
Tap for more steps...
Step 8.1
Multiply a by a2 by adding the exponents.
Tap for more steps...
Step 8.1.1
Move a2.
(a-1)(a4+a3+a2+a+1-3(a2a)-2aa-2a)÷(a+3)
Step 8.1.2
Multiply a2 by a.
Tap for more steps...
Step 8.1.2.1
Raise a to the power of 1.
(a-1)(a4+a3+a2+a+1-3(a2a1)-2aa-2a)÷(a+3)
Step 8.1.2.2
Use the power rule aman=am+n to combine exponents.
(a-1)(a4+a3+a2+a+1-3a2+1-2aa-2a)÷(a+3)
(a-1)(a4+a3+a2+a+1-3a2+1-2aa-2a)÷(a+3)
Step 8.1.3
Add 2 and 1.
(a-1)(a4+a3+a2+a+1-3a3-2aa-2a)÷(a+3)
(a-1)(a4+a3+a2+a+1-3a3-2aa-2a)÷(a+3)
Step 8.2
Multiply a by a by adding the exponents.
Tap for more steps...
Step 8.2.1
Move a.
(a-1)(a4+a3+a2+a+1-3a3-2(aa)-2a)÷(a+3)
Step 8.2.2
Multiply a by a.
(a-1)(a4+a3+a2+a+1-3a3-2a2-2a)÷(a+3)
(a-1)(a4+a3+a2+a+1-3a3-2a2-2a)÷(a+3)
(a-1)(a4+a3+a2+a+1-3a3-2a2-2a)÷(a+3)
Step 9
Subtract 3a3 from a3.
(a-1)(a4-2a3+a2+a+1-2a2-2a)÷(a+3)
Step 10
Subtract 2a2 from a2.
(a-1)(a4-2a3-a2+a+1-2a)÷(a+3)
Step 11
Subtract 2a from a.
(a-1)(a4-2a3-a2-a+1)÷(a+3)
 [x2  12  π  xdx ]