Basic Math Examples

Factor 2y^4z^2-6y^3z+(2y^4z^2-y^3z)-(6y^4z^2-y^3z)
2y4z2-6y3z+(2y4z2-y3z)-(6y4z2-y3z)2y4z26y3z+(2y4z2y3z)(6y4z2y3z)
Step 1
Remove parentheses.
2y4z2-6y3z+2y4z2-y3z-(6y4z2-y3z)
Step 2
Factor 2y3z out of 2y4z2-6y3z.
Tap for more steps...
Step 2.1
Factor 2y3z out of 2y4z2.
2y3z(yz)-6y3z+2y4z2-y3z-(6y4z2-y3z)
Step 2.2
Factor 2y3z out of -6y3z.
2y3z(yz)+2y3z(-3)+2y4z2-y3z-(6y4z2-y3z)
Step 2.3
Factor 2y3z out of 2y3z(yz)+2y3z(-3).
2y3z(yz-3)+2y4z2-y3z-(6y4z2-y3z)
2y3z(yz-3)+2y4z2-y3z-(6y4z2-y3z)
Step 3
Apply the distributive property.
2y3z(yz-3)+2y4z2-y3z-(6y4z2)-(-y3z)
Step 4
Multiply 6 by -1.
2y3z(yz-3)+2y4z2-y3z-6(y4z2)-(-y3z)
Step 5
Multiply -(-y3z).
Tap for more steps...
Step 5.1
Multiply -1 by -1.
2y3z(yz-3)+2y4z2-y3z-6(y4z2)+1(y3z)
Step 5.2
Multiply y3 by 1.
2y3z(yz-3)+2y4z2-y3z-6(y4z2)+y3z
2y3z(yz-3)+2y4z2-y3z-6(y4z2)+y3z
Step 6
Remove parentheses.
2y3z(yz-3)+2y4z2-y3z-6y4z2+y3z
Step 7
Subtract 6y4z2 from 2y4z2.
2y3z(yz-3)-4y4z2-y3z+y3z
Step 8
Add -y3z and y3z.
2y3z(yz-3)-4y4z2+0
Step 9
Add -4y4z2 and 0.
2y3z(yz-3)-4y4z2
Step 10
Factor 2y3z out of 2y3z(yz-3)-4y4z2.
Tap for more steps...
Step 10.1
Factor 2y3z out of -4y4z2.
2y3z(yz-3)+2y3z(-2yz)
Step 10.2
Factor 2y3z out of 2y3z(yz-3)+2y3z(-2yz).
2y3z(yz-3-2yz)
2y3z(yz-3-2yz)
Step 11
Subtract 2yz from yz.
2y3z(-yz-3)
Step 12
Factor.
Tap for more steps...
Step 12.1
Factor -1 out of -yz-3.
Tap for more steps...
Step 12.1.1
Factor -1 out of -yz.
2y3z(-(yz)-3)
Step 12.1.2
Rewrite -3 as -1(3).
2y3z(-(yz)-1(3))
Step 12.1.3
Factor -1 out of -(yz)-1(3).
2y3z(-(yz+3))
2y3z(-(yz+3))
Step 12.2
Remove unnecessary parentheses.
2y3z-1(yz+3)
2y3z-1(yz+3)
Step 13
Combine exponents.
Tap for more steps...
Step 13.1
Factor out negative.
-(2y3z(yz+3))
Step 13.2
Multiply 2 by -1.
-2(y3z(yz+3))
-2(y3z(yz+3))
Step 14
Remove unnecessary parentheses.
-2y3z(yz+3)
(
(
)
)
|
|
[
[
]
]
π
π
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
!
!
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]