Enter a problem...
Basic Math Examples
√52ab3√13a√52ab3√13a
Step 1
Multiply 52ab3√13a52ab3√13a by √13a√13a√13a√13a.
√52ab3√13a⋅√13a√13a√52ab3√13a⋅√13a√13a
Step 2
Step 2.1
Multiply 52ab3√13a52ab3√13a by √13a√13a√13a√13a.
√52ab3√13a√13a√13a√52ab3√13a√13a√13a
Step 2.2
Raise √13a√13a to the power of 11.
√52ab3√13a√13a1√13a
⎷52ab3√13a√13a1√13a
Step 2.3
Raise √13a√13a to the power of 11.
√52ab3√13a√13a1√13a1
⎷52ab3√13a√13a1√13a1
Step 2.4
Use the power rule aman=am+naman=am+n to combine exponents.
√52ab3√13a√13a1+1
⎷52ab3√13a√13a1+1
Step 2.5
Add 11 and 11.
√52ab3√13a√13a2
⎷52ab3√13a√13a2
Step 2.6
Rewrite √13a2√13a2 as 13a13a.
Step 2.6.1
Use n√ax=axnn√ax=axn to rewrite √13a√13a as (13a)12(13a)12.
√52ab3√13a((13a)12)2
⎷52ab3√13a((13a)12)2
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√52ab3√13a(13a)12⋅2
⎷52ab3√13a(13a)12⋅2
Step 2.6.3
Combine 1212 and 22.
√52ab3√13a(13a)22
⎷52ab3√13a(13a)22
Step 2.6.4
Cancel the common factor of 22.
Step 2.6.4.1
Cancel the common factor.
√52ab3√13a(13a)22
Step 2.6.4.2
Rewrite the expression.
√52ab3√13a(13a)1
√52ab3√13a(13a)1
Step 2.6.5
Simplify.
√52ab3√13a13a
√52ab3√13a13a
√52ab3√13a13a
Step 3
Step 3.1
Factor 13 out of 52ab3√13a.
√13(4ab3√13a)13a
Step 3.2
Cancel the common factors.
Step 3.2.1
Factor 13 out of 13a.
√13(4ab3√13a)13(a)
Step 3.2.2
Cancel the common factor.
√13(4ab3√13a)13a
Step 3.2.3
Rewrite the expression.
√4ab3√13aa
√4ab3√13aa
√4ab3√13aa
Step 4
Step 4.1
Cancel the common factor.
√4ab3√13aa
Step 4.2
Divide 4b3√13a by 1.
√4b3√13a
√4b3√13a
Step 5
Step 5.1
Rewrite 4 as 22.
√22b3√13a
Step 5.2
Factor out b2.
√22(b2b)√13a
Step 5.3
Rewrite 22b2 as (2b)2.
√(2b)2b√13a
Step 5.4
Add parentheses.
√(2b)2(b√13a)
√(2b)2(b√13a)
Step 6
Pull terms out from under the radical.
2b√b√13a