Enter a problem...
Basic Math Examples
arctan(5-5√3)arctan(5−5√3)
Step 1
Step 1.1
Factor 55 out of 55.
arctan(5(1)-5√3)arctan(5(1)−5√3)
Step 1.2
Cancel the common factors.
Step 1.2.1
Factor 55 out of -5√3−5√3.
arctan(5(1)5(-√3))arctan⎛⎜⎝5(1)5(−√3)⎞⎟⎠
Step 1.2.2
Cancel the common factor.
arctan(5⋅15(-√3))
Step 1.2.3
Rewrite the expression.
arctan(1-√3)
arctan(1-√3)
arctan(1-√3)
Step 2
Step 2.1
Rewrite 1 as -1(-1).
arctan(-1(-1)-√3)
Step 2.2
Move the negative in front of the fraction.
arctan(-1√3)
arctan(-1√3)
Step 3
Multiply 1√3 by √3√3.
arctan(-(1√3⋅√3√3))
Step 4
Step 4.1
Multiply 1√3 by √3√3.
arctan(-√3√3√3)
Step 4.2
Raise √3 to the power of 1.
arctan(-√3√31√3)
Step 4.3
Raise √3 to the power of 1.
arctan(-√3√31√31)
Step 4.4
Use the power rule aman=am+n to combine exponents.
arctan(-√3√31+1)
Step 4.5
Add 1 and 1.
arctan(-√3√32)
Step 4.6
Rewrite √32 as 3.
Step 4.6.1
Use n√ax=axn to rewrite √3 as 312.
arctan(-√3(312)2)
Step 4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
arctan(-√3312⋅2)
Step 4.6.3
Combine 12 and 2.
arctan(-√3322)
Step 4.6.4
Cancel the common factor of 2.
Step 4.6.4.1
Cancel the common factor.
arctan(-√3322)
Step 4.6.4.2
Rewrite the expression.
arctan(-√331)
arctan(-√331)
Step 4.6.5
Evaluate the exponent.
arctan(-√33)
arctan(-√33)
arctan(-√33)
Step 5
The exact value of arctan(-√33) is -π6.
-π6
Step 6
The result can be shown in multiple forms.
Exact Form:
-π6
Decimal Form:
-0.52359877…