Enter a problem...
Basic Math Examples
4+4i7-2i4+4i7−2i
Step 1
Multiply the numerator and denominator of 4+4i7-2i4+4i7−2i by the conjugate of 7-2i7−2i to make the denominator real.
4+4i7-2i⋅7+2i7+2i4+4i7−2i⋅7+2i7+2i
Step 2
Step 2.1
Combine.
(4+4i)(7+2i)(7-2i)(7+2i)(4+4i)(7+2i)(7−2i)(7+2i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (4+4i)(7+2i)(4+4i)(7+2i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
4(7+2i)+4i(7+2i)(7-2i)(7+2i)4(7+2i)+4i(7+2i)(7−2i)(7+2i)
Step 2.2.1.2
Apply the distributive property.
4⋅7+4(2i)+4i(7+2i)(7-2i)(7+2i)4⋅7+4(2i)+4i(7+2i)(7−2i)(7+2i)
Step 2.2.1.3
Apply the distributive property.
4⋅7+4(2i)+4i⋅7+4i(2i)(7-2i)(7+2i)4⋅7+4(2i)+4i⋅7+4i(2i)(7−2i)(7+2i)
4⋅7+4(2i)+4i⋅7+4i(2i)(7-2i)(7+2i)4⋅7+4(2i)+4i⋅7+4i(2i)(7−2i)(7+2i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 44 by 77.
28+4(2i)+4i⋅7+4i(2i)(7-2i)(7+2i)28+4(2i)+4i⋅7+4i(2i)(7−2i)(7+2i)
Step 2.2.2.1.2
Multiply 22 by 44.
28+8i+4i⋅7+4i(2i)(7-2i)(7+2i)28+8i+4i⋅7+4i(2i)(7−2i)(7+2i)
Step 2.2.2.1.3
Multiply 77 by 44.
28+8i+28i+4i(2i)(7-2i)(7+2i)28+8i+28i+4i(2i)(7−2i)(7+2i)
Step 2.2.2.1.4
Multiply 4i(2i)4i(2i).
Step 2.2.2.1.4.1
Multiply 22 by 44.
28+8i+28i+8ii(7-2i)(7+2i)28+8i+28i+8ii(7−2i)(7+2i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
28+8i+28i+8(i1i)(7-2i)(7+2i)28+8i+28i+8(i1i)(7−2i)(7+2i)
Step 2.2.2.1.4.3
Raise ii to the power of 11.
28+8i+28i+8(i1i1)(7-2i)(7+2i)28+8i+28i+8(i1i1)(7−2i)(7+2i)
Step 2.2.2.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
28+8i+28i+8i1+1(7-2i)(7+2i)28+8i+28i+8i1+1(7−2i)(7+2i)
Step 2.2.2.1.4.5
Add 11 and 11.
28+8i+28i+8i2(7-2i)(7+2i)28+8i+28i+8i2(7−2i)(7+2i)
28+8i+28i+8i2(7-2i)(7+2i)28+8i+28i+8i2(7−2i)(7+2i)
Step 2.2.2.1.5
Rewrite i2i2 as -1−1.
28+8i+28i+8⋅-1(7-2i)(7+2i)28+8i+28i+8⋅−1(7−2i)(7+2i)
Step 2.2.2.1.6
Multiply 88 by -1−1.
28+8i+28i-8(7-2i)(7+2i)28+8i+28i−8(7−2i)(7+2i)
28+8i+28i-8(7-2i)(7+2i)28+8i+28i−8(7−2i)(7+2i)
Step 2.2.2.2
Subtract 88 from 2828.
20+8i+28i(7-2i)(7+2i)20+8i+28i(7−2i)(7+2i)
Step 2.2.2.3
Add 8i8i and 28i28i.
20+36i(7-2i)(7+2i)20+36i(7−2i)(7+2i)
20+36i(7-2i)(7+2i)20+36i(7−2i)(7+2i)
20+36i(7-2i)(7+2i)20+36i(7−2i)(7+2i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (7-2i)(7+2i)(7−2i)(7+2i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
20+36i7(7+2i)-2i(7+2i)20+36i7(7+2i)−2i(7+2i)
Step 2.3.1.2
Apply the distributive property.
20+36i7⋅7+7(2i)-2i(7+2i)20+36i7⋅7+7(2i)−2i(7+2i)
Step 2.3.1.3
Apply the distributive property.
20+36i7⋅7+7(2i)-2i⋅7-2i(2i)20+36i7⋅7+7(2i)−2i⋅7−2i(2i)
20+36i7⋅7+7(2i)-2i⋅7-2i(2i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 7 by 7.
20+36i49+7(2i)-2i⋅7-2i(2i)
Step 2.3.2.2
Multiply 2 by 7.
20+36i49+14i-2i⋅7-2i(2i)
Step 2.3.2.3
Multiply 7 by -2.
20+36i49+14i-14i-2i(2i)
Step 2.3.2.4
Multiply 2 by -2.
20+36i49+14i-14i-4ii
Step 2.3.2.5
Raise i to the power of 1.
20+36i49+14i-14i-4(i1i)
Step 2.3.2.6
Raise i to the power of 1.
20+36i49+14i-14i-4(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
20+36i49+14i-14i-4i1+1
Step 2.3.2.8
Add 1 and 1.
20+36i49+14i-14i-4i2
Step 2.3.2.9
Subtract 14i from 14i.
20+36i49+0-4i2
Step 2.3.2.10
Add 49 and 0.
20+36i49-4i2
20+36i49-4i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
20+36i49-4⋅-1
Step 2.3.3.2
Multiply -4 by -1.
20+36i49+4
20+36i49+4
Step 2.3.4
Add 49 and 4.
20+36i53
20+36i53
20+36i53
Step 3
Split the fraction 20+36i53 into two fractions.
2053+36i53