Basic Math Examples

Write in Standard Form (4+4i)/(2-2i)
4+4i2-2i
Step 1
Cancel the common factor of 4+4i and 2-2i.
Tap for more steps...
Step 1.1
Factor 2 out of 4.
2(2)+4i2-2i
Step 1.2
Factor 2 out of 4i.
2(2)+2(2i)2-2i
Step 1.3
Factor 2 out of 2(2)+2(2i).
2(2+2i)2-2i
Step 1.4
Cancel the common factors.
Tap for more steps...
Step 1.4.1
Factor 2 out of 2.
2(2+2i)21-2i
Step 1.4.2
Factor 2 out of -2i.
2(2+2i)21+2(-i)
Step 1.4.3
Factor 2 out of 2(1)+2(-i).
2(2+2i)2(1-i)
Step 1.4.4
Cancel the common factor.
2(2+2i)2(1-i)
Step 1.4.5
Rewrite the expression.
2+2i1-i
2+2i1-i
2+2i1-i
Step 2
Multiply the numerator and denominator of 2+2i1-i by the conjugate of 1-i to make the denominator real.
2+2i1-i1+i1+i
Step 3
Multiply.
Tap for more steps...
Step 3.1
Combine.
(2+2i)(1+i)(1-i)(1+i)
Step 3.2
Simplify the numerator.
Tap for more steps...
Step 3.2.1
Expand (2+2i)(1+i) using the FOIL Method.
Tap for more steps...
Step 3.2.1.1
Apply the distributive property.
2(1+i)+2i(1+i)(1-i)(1+i)
Step 3.2.1.2
Apply the distributive property.
21+2i+2i(1+i)(1-i)(1+i)
Step 3.2.1.3
Apply the distributive property.
21+2i+2i1+2ii(1-i)(1+i)
21+2i+2i1+2ii(1-i)(1+i)
Step 3.2.2
Simplify and combine like terms.
Tap for more steps...
Step 3.2.2.1
Simplify each term.
Tap for more steps...
Step 3.2.2.1.1
Multiply 2 by 1.
2+2i+2i1+2ii(1-i)(1+i)
Step 3.2.2.1.2
Multiply 2 by 1.
2+2i+2i+2ii(1-i)(1+i)
Step 3.2.2.1.3
Multiply 2ii.
Tap for more steps...
Step 3.2.2.1.3.1
Raise i to the power of 1.
2+2i+2i+2(i1i)(1-i)(1+i)
Step 3.2.2.1.3.2
Raise i to the power of 1.
2+2i+2i+2(i1i1)(1-i)(1+i)
Step 3.2.2.1.3.3
Use the power rule aman=am+n to combine exponents.
2+2i+2i+2i1+1(1-i)(1+i)
Step 3.2.2.1.3.4
Add 1 and 1.
2+2i+2i+2i2(1-i)(1+i)
2+2i+2i+2i2(1-i)(1+i)
Step 3.2.2.1.4
Rewrite i2 as -1.
2+2i+2i+2-1(1-i)(1+i)
Step 3.2.2.1.5
Multiply 2 by -1.
2+2i+2i-2(1-i)(1+i)
2+2i+2i-2(1-i)(1+i)
Step 3.2.2.2
Subtract 2 from 2.
0+2i+2i(1-i)(1+i)
Step 3.2.2.3
Add 0 and 2i.
2i+2i(1-i)(1+i)
Step 3.2.2.4
Add 2i and 2i.
4i(1-i)(1+i)
4i(1-i)(1+i)
4i(1-i)(1+i)
Step 3.3
Simplify the denominator.
Tap for more steps...
Step 3.3.1
Expand (1-i)(1+i) using the FOIL Method.
Tap for more steps...
Step 3.3.1.1
Apply the distributive property.
4i1(1+i)-i(1+i)
Step 3.3.1.2
Apply the distributive property.
4i11+1i-i(1+i)
Step 3.3.1.3
Apply the distributive property.
4i11+1i-i1-ii
4i11+1i-i1-ii
Step 3.3.2
Simplify.
Tap for more steps...
Step 3.3.2.1
Multiply 1 by 1.
4i1+1i-i1-ii
Step 3.3.2.2
Multiply -1 by 1.
4i1+1i-i-ii
Step 3.3.2.3
Raise i to the power of 1.
4i1+1i-i-(i1i)
Step 3.3.2.4
Raise i to the power of 1.
4i1+1i-i-(i1i1)
Step 3.3.2.5
Use the power rule aman=am+n to combine exponents.
4i1+1i-i-i1+1
Step 3.3.2.6
Add 1 and 1.
4i1+1i-i-i2
Step 3.3.2.7
Subtract i from 1i.
4i1+0-i2
Step 3.3.2.8
Add 1 and 0.
4i1-i2
4i1-i2
Step 3.3.3
Simplify each term.
Tap for more steps...
Step 3.3.3.1
Rewrite i2 as -1.
4i1--1
Step 3.3.3.2
Multiply -1 by -1.
4i1+1
4i1+1
Step 3.3.4
Add 1 and 1.
4i2
4i2
4i2
Step 4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 4.1
Factor 2 out of 4i.
2(2i)2
Step 4.2
Cancel the common factors.
Tap for more steps...
Step 4.2.1
Factor 2 out of 2.
2(2i)2(1)
Step 4.2.2
Cancel the common factor.
2(2i)21
Step 4.2.3
Rewrite the expression.
2i1
Step 4.2.4
Divide 2i by 1.
2i
2i
2i
 [x2  12  π  xdx ]