Enter a problem...
Basic Math Examples
3-i2+3i
Step 1
Multiply the numerator and denominator of 3-i2+3i by the conjugate of 2+3i to make the denominator real.
3-i2+3i⋅2-3i2-3i
Step 2
Step 2.1
Combine.
(3-i)(2-3i)(2+3i)(2-3i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (3-i)(2-3i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
3(2-3i)-i(2-3i)(2+3i)(2-3i)
Step 2.2.1.2
Apply the distributive property.
3⋅2+3(-3i)-i(2-3i)(2+3i)(2-3i)
Step 2.2.1.3
Apply the distributive property.
3⋅2+3(-3i)-i⋅2-i(-3i)(2+3i)(2-3i)
3⋅2+3(-3i)-i⋅2-i(-3i)(2+3i)(2-3i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 3 by 2.
6+3(-3i)-i⋅2-i(-3i)(2+3i)(2-3i)
Step 2.2.2.1.2
Multiply -3 by 3.
6-9i-i⋅2-i(-3i)(2+3i)(2-3i)
Step 2.2.2.1.3
Multiply 2 by -1.
6-9i-2i-i(-3i)(2+3i)(2-3i)
Step 2.2.2.1.4
Multiply -i(-3i).
Step 2.2.2.1.4.1
Multiply -3 by -1.
6-9i-2i+3ii(2+3i)(2-3i)
Step 2.2.2.1.4.2
Raise i to the power of 1.
6-9i-2i+3(i1i)(2+3i)(2-3i)
Step 2.2.2.1.4.3
Raise i to the power of 1.
6-9i-2i+3(i1i1)(2+3i)(2-3i)
Step 2.2.2.1.4.4
Use the power rule aman=am+n to combine exponents.
6-9i-2i+3i1+1(2+3i)(2-3i)
Step 2.2.2.1.4.5
Add 1 and 1.
6-9i-2i+3i2(2+3i)(2-3i)
6-9i-2i+3i2(2+3i)(2-3i)
Step 2.2.2.1.5
Rewrite i2 as -1.
6-9i-2i+3⋅-1(2+3i)(2-3i)
Step 2.2.2.1.6
Multiply 3 by -1.
6-9i-2i-3(2+3i)(2-3i)
6-9i-2i-3(2+3i)(2-3i)
Step 2.2.2.2
Subtract 3 from 6.
3-9i-2i(2+3i)(2-3i)
Step 2.2.2.3
Subtract 2i from -9i.
3-11i(2+3i)(2-3i)
3-11i(2+3i)(2-3i)
3-11i(2+3i)(2-3i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (2+3i)(2-3i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
3-11i2(2-3i)+3i(2-3i)
Step 2.3.1.2
Apply the distributive property.
3-11i2⋅2+2(-3i)+3i(2-3i)
Step 2.3.1.3
Apply the distributive property.
3-11i2⋅2+2(-3i)+3i⋅2+3i(-3i)
3-11i2⋅2+2(-3i)+3i⋅2+3i(-3i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 2 by 2.
3-11i4+2(-3i)+3i⋅2+3i(-3i)
Step 2.3.2.2
Multiply -3 by 2.
3-11i4-6i+3i⋅2+3i(-3i)
Step 2.3.2.3
Multiply 2 by 3.
3-11i4-6i+6i+3i(-3i)
Step 2.3.2.4
Multiply -3 by 3.
3-11i4-6i+6i-9ii
Step 2.3.2.5
Raise i to the power of 1.
3-11i4-6i+6i-9(i1i)
Step 2.3.2.6
Raise i to the power of 1.
3-11i4-6i+6i-9(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
3-11i4-6i+6i-9i1+1
Step 2.3.2.8
Add 1 and 1.
3-11i4-6i+6i-9i2
Step 2.3.2.9
Add -6i and 6i.
3-11i4+0-9i2
Step 2.3.2.10
Add 4 and 0.
3-11i4-9i2
3-11i4-9i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
3-11i4-9⋅-1
Step 2.3.3.2
Multiply -9 by -1.
3-11i4+9
3-11i4+9
Step 2.3.4
Add 4 and 9.
3-11i13
3-11i13
3-11i13
Step 3
Split the fraction 3-11i13 into two fractions.
313+-11i13
Step 4
Move the negative in front of the fraction.
313-11i13