Enter a problem...
Basic Math Examples
-3-3i4-5i−3−3i4−5i
Step 1
Multiply the numerator and denominator of -3-3i4-5i−3−3i4−5i by the conjugate of 4-5i4−5i to make the denominator real.
-3-3i4-5i⋅4+5i4+5i−3−3i4−5i⋅4+5i4+5i
Step 2
Step 2.1
Combine.
(-3-3i)(4+5i)(4-5i)(4+5i)(−3−3i)(4+5i)(4−5i)(4+5i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (-3-3i)(4+5i)(−3−3i)(4+5i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
-3(4+5i)-3i(4+5i)(4-5i)(4+5i)−3(4+5i)−3i(4+5i)(4−5i)(4+5i)
Step 2.2.1.2
Apply the distributive property.
-3⋅4-3(5i)-3i(4+5i)(4-5i)(4+5i)−3⋅4−3(5i)−3i(4+5i)(4−5i)(4+5i)
Step 2.2.1.3
Apply the distributive property.
-3⋅4-3(5i)-3i⋅4-3i(5i)(4-5i)(4+5i)−3⋅4−3(5i)−3i⋅4−3i(5i)(4−5i)(4+5i)
-3⋅4-3(5i)-3i⋅4-3i(5i)(4-5i)(4+5i)−3⋅4−3(5i)−3i⋅4−3i(5i)(4−5i)(4+5i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply -3−3 by 44.
-12-3(5i)-3i⋅4-3i(5i)(4-5i)(4+5i)−12−3(5i)−3i⋅4−3i(5i)(4−5i)(4+5i)
Step 2.2.2.1.2
Multiply 55 by -3−3.
-12-15i-3i⋅4-3i(5i)(4-5i)(4+5i)−12−15i−3i⋅4−3i(5i)(4−5i)(4+5i)
Step 2.2.2.1.3
Multiply 44 by -3−3.
-12-15i-12i-3i(5i)(4-5i)(4+5i)−12−15i−12i−3i(5i)(4−5i)(4+5i)
Step 2.2.2.1.4
Multiply -3i(5i)−3i(5i).
Step 2.2.2.1.4.1
Multiply 55 by -3−3.
-12-15i-12i-15ii(4-5i)(4+5i)−12−15i−12i−15ii(4−5i)(4+5i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
-12-15i-12i-15(i1i)(4-5i)(4+5i)−12−15i−12i−15(i1i)(4−5i)(4+5i)
Step 2.2.2.1.4.3
Raise ii to the power of 11.
-12-15i-12i-15(i1i1)(4-5i)(4+5i)−12−15i−12i−15(i1i1)(4−5i)(4+5i)
Step 2.2.2.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
-12-15i-12i-15i1+1(4-5i)(4+5i)−12−15i−12i−15i1+1(4−5i)(4+5i)
Step 2.2.2.1.4.5
Add 11 and 11.
-12-15i-12i-15i2(4-5i)(4+5i)−12−15i−12i−15i2(4−5i)(4+5i)
-12-15i-12i-15i2(4-5i)(4+5i)−12−15i−12i−15i2(4−5i)(4+5i)
Step 2.2.2.1.5
Rewrite i2i2 as -1−1.
-12-15i-12i-15⋅-1(4-5i)(4+5i)−12−15i−12i−15⋅−1(4−5i)(4+5i)
Step 2.2.2.1.6
Multiply -15−15 by -1−1.
-12-15i-12i+15(4-5i)(4+5i)−12−15i−12i+15(4−5i)(4+5i)
-12-15i-12i+15(4-5i)(4+5i)−12−15i−12i+15(4−5i)(4+5i)
Step 2.2.2.2
Add -12−12 and 1515.
3-15i-12i(4-5i)(4+5i)3−15i−12i(4−5i)(4+5i)
Step 2.2.2.3
Subtract 12i12i from -15i−15i.
3-27i(4-5i)(4+5i)3−27i(4−5i)(4+5i)
3-27i(4-5i)(4+5i)3−27i(4−5i)(4+5i)
3-27i(4-5i)(4+5i)3−27i(4−5i)(4+5i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (4-5i)(4+5i)(4−5i)(4+5i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
3-27i4(4+5i)-5i(4+5i)3−27i4(4+5i)−5i(4+5i)
Step 2.3.1.2
Apply the distributive property.
3-27i4⋅4+4(5i)-5i(4+5i)3−27i4⋅4+4(5i)−5i(4+5i)
Step 2.3.1.3
Apply the distributive property.
3-27i4⋅4+4(5i)-5i⋅4-5i(5i)3−27i4⋅4+4(5i)−5i⋅4−5i(5i)
3-27i4⋅4+4(5i)-5i⋅4-5i(5i)3−27i4⋅4+4(5i)−5i⋅4−5i(5i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 44 by 44.
3-27i16+4(5i)-5i⋅4-5i(5i)3−27i16+4(5i)−5i⋅4−5i(5i)
Step 2.3.2.2
Multiply 55 by 44.
3-27i16+20i-5i⋅4-5i(5i)3−27i16+20i−5i⋅4−5i(5i)
Step 2.3.2.3
Multiply 44 by -5−5.
3-27i16+20i-20i-5i(5i)3−27i16+20i−20i−5i(5i)
Step 2.3.2.4
Multiply 55 by -5−5.
3-27i16+20i-20i-25ii3−27i16+20i−20i−25ii
Step 2.3.2.5
Raise i to the power of 1.
3-27i16+20i-20i-25(i1i)
Step 2.3.2.6
Raise i to the power of 1.
3-27i16+20i-20i-25(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
3-27i16+20i-20i-25i1+1
Step 2.3.2.8
Add 1 and 1.
3-27i16+20i-20i-25i2
Step 2.3.2.9
Subtract 20i from 20i.
3-27i16+0-25i2
Step 2.3.2.10
Add 16 and 0.
3-27i16-25i2
3-27i16-25i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
3-27i16-25⋅-1
Step 2.3.3.2
Multiply -25 by -1.
3-27i16+25
3-27i16+25
Step 2.3.4
Add 16 and 25.
3-27i41
3-27i41
3-27i41
Step 3
Split the fraction 3-27i41 into two fractions.
341+-27i41
Step 4
Move the negative in front of the fraction.
341-27i41